Laboratory Recommendations for Syphilis Testing in the United States - Supplementary Material

Contents
Overview 1
Supplementary Table 1. Performance characteristics of nontreponemal (lipoidal antigen) serologic tests used for the diagnosis of syphilis 3
Supplementary Table 2. Performance characteristics of treponemal serologic tests used for the diagnosis of syphilis 13
Supplementary Table 3. Performance characteristics of combined nontreponemal (lipoidal antigen) and treponemal serologic assays used for the diagnosis of syphilis 32
Supplementary Table 4. Performance characteristics of nontreponemal (lipoidal antigen) tests used to detect syphilis reactive antibodies in the cerebral spinal fluid 35
Supplementary Table 5. Performance characteristics of treponemal tests used to detect syphilis reactive antibodies in the cerebral spinal fluid 39
Supplementary Table 6. Performance characteristics of tests for the direct detection of T. pallidum 42
Supplementary Table 7. Performance characteristics of point-of-care syphilis tests 67
Supplementary Appendix 1. APHL meeting attendees, conflict of interest disclosures, and key questions 75
Supplementary Appendix 2. Key questions and workgroup reviewers. 76
Supplementary Appendix 3. Peer Review Panel 78
References 79

Overview

In 2017, the Association of Public Health Laboratories (APHL) assisted with the literature review through an independent work group formed to evaluate the scientific literature for CDC to consider in the development of evidence-based recommendations for syphilis testing in the United States. APHL work group members were selected based on expertise in the field of syphilis and represented public health and commercial laboratory directors, public- and private-sector providers, and academic researchers. The workgroup leads were experienced in conducting systematic reviews of the literature. Potential conflicts of interest were disclosed to APHL and are listed at the end of the work group section (Supplementary Appendix 1).

CDC identified key questions regarding syphilis testing in the United States that should be addressed during the literature review process and shared these questions with the APHL work group members in March 2017. Work
group members were assigned key questions to review (Supplementary Appendix 1) and, with the assistance of CDC and APHL staff, conducted an extensive literature search on Medline, Embase, Scopus, Cochrane Library, and CINAHL; combinations of search terms for each key question were used to search for literature published during 1960-June 30, 2017. In November 2017, work group members presented their reviews to CDC and APHL staff. Key questions and pertinent publications were reviewed for strengths, weaknesses, and relevance and were openly discussed by individual work group members. The discussions were informal and not designed to reach consensus; no formal rating system was used.

Following the meeting, the APHL work group was disbanded, and CDC staff reviewed the scientific evidence and ranked the evidence as high, medium, and low, based on each study's strengths and weaknesses as outlined by the U.S. Preventive Services Task Force Ratings (https://www.uspreventiveservicestaskforce.org/uspstf/us-preventive-services-task-force-ratings). The tables of evidence reviewed and ranked are available at (https://www.cdc.gov/std/syphilis/lab/testing/lab-recs-for-testing.htm). Publications were rated as an "A" if they were high quality using clinically characterized specimens, stratified by stage, larger sample size, prospective or a well-done cross-sectional or retrospective study. " B " rated studies were good to moderate quality with large sample sizes, clinically characterized but not stratified by stage, or characterized but unclear exactly how it was done, mild methodological issues. A fair, " C " rated study included those with small sample sizes, moderate methodological issues, single lab test as gold standard, or descriptive. Poor, "D" rated studies were those with major methodological issues or small sample sizes. Case reports or small case studies were rated as "I." Studies that were not relevant to the key question were assigned as "NR" and not further rated. Laboratory Recommendations for Syphilis Testing in the United States were developed by CDC staff based on high-ranking scientific evidence published in peer-reviewed scientific journals (Supplementary Tables 1-7).

Draft recommendations were peer reviewed as defined by the Office of Management and Budget for influential scientific information. In February 2022, draft recommendations were peer reviewed by four experts in the field of syphilis who were not United States federal employees, were not funded by CDC for syphilis research, and were not involved in the development of these recommendations (Supplementary Appendix 3).

Supplementary Table 1. Performance characteristics of nontreponemal (lipoidal antigen) serologic tests used for the diagnosis of syphilis

Assay	Study summary and reference standard	Performance characteristics*	Reference
AIX1000	Retrospective cross-sectional clinical trial study for submission to FDA	Prospective serum samples ($\mathrm{N}=765$)	(1) ${ }^{\dagger}$
Gold Standard		PPA: 95.5\% (95\% CI: $77.2 \%-99.9 \%$)	
Diagnostics		PNA: 99.9\% (95\% CI: 99.3\%-100\%)	
2851 Spafford St	Reference standard: ASI RPR card		
Davis, CA 95618	Clinically characterized samples: Primary syphilis: genital lesion, positive for spirochetes on darkfield microscopy (if performed), and reactive treponemal serologic test	Retrospective serum from patients referred for syphilis testing ($\mathrm{N}=2,246$)	
		PPA: 97.2% (95% CI: $95.5 \%-98.4 \%$)	
		PNA: 99.1% (95\% CI: $98.5 \%-99.5 \%)$	
	Secondary syphilis: rash or mucous patches or condyloma lata with reactive treponemal serologic test	Samples from HIV+ patients ($\mathrm{n}=250$ non-treponemal test negative; $\mathrm{n}=30$ nontreponemal test positive) PPA: 100% (95% CI: $90.5 \%-100 \%$) PNA: 100% (95% CI: $98.8 \%-100 \%$)	
	Latent syphilis reactive treponemal and nontreponemal serologic test with a nonreactive nontreponemal serologic test for more than a year or unknown duration	Clinically characterized samples: All samples positive on AIX1000 and comparator; 100% sensitive at all stages.	
		$\begin{aligned} & \text { Primary treated }(\mathrm{n}=13): 100 \% \text { agreement }(95 \% \mathrm{CI} \text { : } \\ & 79.4 \%-100 \%) \end{aligned}$	
		Primary untreated $(\mathrm{n}=12)$: 100% agreement $(95 \% \mathrm{CI}$: $77.9 \%-100 \%$)	
		Secondary treated $(\mathrm{n}=25)$: 100% agreement ($95 \% \mathrm{CI}$: $88.7 \%-100 \%$)	
		Secondary untreated $(\mathrm{n}=25): 100 \%$ agreement $(95 \%$ CI: $88.7 \%-100 \%$)	
		Latent treated ($\mathrm{n}=25$): 100% agreement ($95 \% \mathrm{CI}$: $88.7 \%-100 \%$)	
		Latent untreated ($\mathrm{n}=25$): 100% agreement $(95 \% \mathrm{CI}$: $88.7 \%-100 \%$)	
ASI Evolution	Prospective and retrospective cross-sectional clinical trial study for submission to FDA	Prospective serum samples ($\mathrm{N}=1,068$) PPA: 99.1\% (95\% CI: 95.2\%-99.9\%)	$(2)^{\dagger}$

Assay	Study summary and reference standard	Performance characteristics*	Reference
Arlington		PNA: 99.9\% (95\% CI: $99.4 \%-100 \%$)	
Scientific			
1840 N	Prospective serum samples: 1,068	Retrospective serum samples ($\mathrm{N}=10$)	
Technology Dr	Retrospective serum samples: 10	PPA: 100% (95\% CI: $59 \%-100 \%$)	
Springville, UT	Retrospective plasma samples: 1003	PNA: 100\% (95\% CI: $29.2 \%-100 \%$)	
84663	Clinically diagnosed syphilis patients: 143		
	Pregnant women: 250	Retrospective plasma samples ($\mathrm{N}=1,003$)	
		PPA: 100% (95\% CI: 69.2\%-100\%)	
	Reference standard: ASI RPR card	PNA: 100% (95% CI: $99.6 \%-100 \%$)	
	Clinical characteristics not defined beyond the stage of syphilis being diagnosed by a licensed physician	Clinically diagnosed syphilis patients ($\mathrm{N}=143$)	
		Primary treated ($\mathrm{n}=25$): 100% agreement (95% CI:	
		81.5\%-100\%)	
		Primary untreated ($\mathrm{n}=18$): 100% agreement $(95 \%$ CI: $86.3 \%-100 \%)$	
		Secondary treated ($\mathrm{n}=25$): 100\% agreement (95% CI:	
		86.3\%-100\%)	
		Secondary untreated ($\mathrm{n}=25$): 100% agreement (95%	
		CI: $86.3 \%-100 \%$)	
		Latent treated ($\mathrm{n}=25$): 100% agreement ($95 \% \mathrm{CI}$:	
		86.3\%-100\%)	
		Latent untreated ($\mathrm{n}=25$): 100% agreement $(95 \% \mathrm{CI}$:	
		$86.3 \%-100 \%)$	
		All phases treated ($\mathrm{n}=75$): 100% agreement ($95 \% \mathrm{CI}$: 95.1\%-100\%)	
		All phases untreated ($\mathrm{n}=25$): 100% agreement (95%	
		CI: $94.7 \%-100 \%)$	
		Pregnant women ($\mathrm{N}=250$)	
		PPA: 100% (95\% CI: $88.7 \%-100 \%$)	
		PNA: 100% (95% CI: $98.5 \%-100 \%$)	
Rapid Plasma Reagin (RPR) ${ }^{\text {§ }}$	Retrospective cross-sectional study	Primary syphilis ($\mathrm{n}=106$)	(3)
		Sensitivity: 72.5\%	
	Patients with primary syphilis: 106		

Reference standard: Darkfield positive chancre and no signs of secondary syphilis (signs and symptoms not reported in the paper)

Cross-sectional study	Primary syphilis ($\mathrm{n}=109$)
Sensitivity: 92.7%	

Retrospective cross-sectional study based on stored serum from clinically classified patients

Patients with primary syphilis: 119
Patients with secondary syphilis: 98

Reference standard: Darkfield positive lesions consistent with primary and secondary syphilis (signs and symptoms not reported in the paper)

Cross-sectional study
Patients with primary syphilis: 111
Patients with secondary syphilis: 56

Primary syphilis $(\mathrm{n}=111)$
Sensitivity: 64.8\%

Secondary syphilis $(\mathrm{n}=56)$
Sensitivity: 100\%

Reference standard: (1) Primary syphilis-darkfield positive chancre and no signs of secondary syphilis; (2) secondary syphilis-darkfield positive secondary lesions or at least two symptoms of secondary syphilis, such as condylomata lata, alopecia, and lymphadenopathy

Patients with secondary syphilis: 29
Reference standard: (1) Primary syphilis-darkfield positive chancre and no signs of secondary syphilis; (2) secondary syphilis-darkfield positive secondary lesions or at least two symptoms of secondary syphilis, such as condylomata lata, alopecia, and lymphadenopathy

Cross-sectional study

Patients with primary syphilis: 134
Patients with secondary syphilis: 217

Reference standard: Darkfield positive lesions consistent with primary and secondary syphilis (signs and symptoms not reported in the paper)

Cross-sectional study

Patients with primary syphilis: 21
Reference standard: Darkfield positive chancre and no signs of secondary syphilis

Retrospective cross-sectional study

Patients with primary syphilis: 76
Patients with secondary syphilis: 100

Reference standard: Darkfield positive lesions consistent with primary and secondary syphilis (signs and symptoms not reported in the paper)

Secondary syphilis ($\mathrm{n}=29$)
Sensitivity: 100\%

Primary syphilis ($\mathrm{n}=134$)
Sensitivity: 76.1\%
Secondary syphilis ($\mathrm{n}=217$)
Sensitivity: 91.2\%

Primary syphilis ($\mathrm{n}=21$)
Sensitivity: 71%

Primary syphilis $(\mathrm{n}=76)$
Sensitivity: 48.7%
Secondary syphilis $(\mathrm{n}=100)$
Sensitivity: 91\%

Patients with secondary syphilis: 23

Reference standard: Positive FTA-ABS serology plus clinical findings

Cross-sectional study
Secondary syphilis ($\mathrm{n}=31$)
Patients with secondary syphilis: 31

Reference standard: Positive VDRL plus clinical findings

Retrospective case series	Late latent syphilis ($\mathrm{n}=1,303$) Sensitivity: 63.6\%	(13)
Patients with late latent syphilis: 1,303		
Reference standard: Positive FTS-ABS or MHA-TP serologic tests plus a diagnosis of late latent syphilis		
Retrospective cross-sectional study	Combined data from asymptomatic and symptomatic neurosyphilis patients ($\mathrm{n}=25$)	(14)
Patients with neurosyphilis: 25 (24 patients were considered	Sensitivity: 75\%	
to have neurosyphilis, from which 8 had symptomatic neurosyphilis [disease meningovascular $=6$; meningitis $=1$;	Specificity: 99.3\%	
cranial neuritis $=1$], 16 asymptomatic neurosyphilis [no	Asymptomatic neurosyphilis patients ($\mathrm{n}=16$)	
neurologic symptoms or signs], and 1 patient with all clinical and laboratory criteria of neurosyphilis, except	Sensitivity: 68.8%	
increased proteins; all 25 were living with HIV)	Symptomatic neurosyphilis patients ($\mathrm{n}=8$) Sensitivity: 100%	

Sensitivity: 100\%

Sensitivity: 100%

Syphilis positive control patients: 163 patients with syphilis based on serology and no signs of neurosyphilis

Syphilis negative control patients with other neurologic disorders: 126

Reference standard: Reactive FTA-ABS, increased CSF protein $\geq 45 \mathrm{mg} / \mathrm{dL}$ and CSF pleocytosis $\geq 10 \mathrm{cell} / \mathrm{mm}^{3}$

Assay	Study summary and reference standard	Performance characteristics*	Reference
Unheated Serum Reagin (USR) ${ }^{\S}$	Retrospective cross-sectional study based on stored serum from clinically classified patients	Primary syphilis $(\mathrm{n}=119)$ Sensitivity: 71.4%	(5)

Reference standard: (1) Primary syphilis-darkfield positive chancre and no signs of secondary syphilis; (2) secondary syphilis-darkfield positive secondary lesions or at least two symptoms of secondary syphilis, such as condylomatalata, alopecia, and lymphadenopathy

Cross-sectional study
Patients with primary syphilis: 80
Patients with secondary syphilis: 29
Reference standard: (1) Primary syphilis - darkfield positive chancre and no signs of secondary syphilis; (2) Secondary syphilis - darkfield positive secondary lesions or at least two symptoms of secondary syphilis such as condylomata lata, alopecia, and lymphadenopathy
Cross-sectional study
Patients with primary syphilis: 134
Patients with secondary syphilis: 217
Reference standard: Darkfield positive lesions consistent
with primary and secondary syphilis (signs and symptoms with primary and secondary syphilis (signs and symptoms not reported in the paper)

Primary syphilis ($\mathrm{n}=134$)
Sensitivity: 78.4\%
Secondary syphilis ($\mathrm{n}=217$)
Sensitivity: 100\%

Cross-sectional study
Patients with primary syphilis: 63
Patients with secondary syphilis: 23
Reference standard: (1) Primary syphilis-darkfield positive chancre and no signs of secondary syphilis; (2) secondary

Primary syphilis ($\mathrm{n}=80$)
Sensitivity: 62.5\%
Secondary syphilis ($\mathrm{n}=29$)
Sensitivity: 100\%

Primary syphilis ($\mathrm{n}=63$)
Sensitivity: 76.2\%
Secondary syphilis $(\mathrm{n}=23)$
Sensitivity: 100%
syphilis-darkfield positive secondary lesions or at least two symptoms of secondary syphilis, such as condylomata lata, alopecia, and lymphadenopathy
Cross-sectional study
Primary syphilis ($\mathrm{n}=130$)
Sensitivity: 68.5%

Patients with primary syphilis: 130
Reference standard: Darkfield positive chancre and no signs of secondary syphilis

Cross-sectional study	Primary syphilis $(\mathrm{n}=13)$ Sensitivity: 76.9%
Patients with primary syphilis: 13 Patients with secondary syphilis: 16	Secondary syphilis (n =16) Sensitivity: 100%
Reference standard: Darkfield positive lesions consistent with primary and secondary syphilis (signs and symptoms not reported in the paper)	

Cross-sectional study	Primary syphilis $(\mathrm{n}=62)$ Sensitivity: 63%	
Patients with primary syphilis: 62		
Reference standard: Darkfield positive chancre and no signs of secondary syphilis (signs and symptoms not reported in the paper)		
Retrospective cross-sectional study	Primary syphilis ($\mathrm{n}=322)$ Sensitivity: 73.3%	(19)
Patients with primary syphilis: 322		

Reference standard: Darkfield positive chancre and no signs of secondary syphilis (signs and symptoms not reported in the paper)

Sensitivity: 68.5\%

Assay	Study summary and reference standard	Performance characteristics*	Reference
	Retrospective cross-sectional study	Primary syphilis ($\mathrm{n}=76$) Sensitivity: 50\%	(10)
	Patients with primary syphilis: 76		
	Patients with secondary syphilis: 100	Secondary syphilis ($\mathrm{n}=100$) Sensitivity: 100\%	
	Reference standard: Darkfield positive lesions consistent with primary and secondary syphilis (signs and symptoms not reported in the paper)		
	Retrospective cross-sectional study	Early latent syphilis ($\mathrm{n}=6$) Sensitivity: 100\%	(20)
	Patients with early latent syphilis: 6		
	Patients with late latent syphilis: 12	Late latent syphilis ($\mathrm{n}=12$) Sensitivity: 75\%	
	Reference standard: Reactive TPPA, FTA-ABS tests and Western blot plus a diagnosis of syphilis (signs and symptoms not reported in the paper)		
	Retrospective cross-sectional study	Early latent syphilis ($\mathrm{n}=23$) Sensitivity: 82.1\%	(21)
	Patients with early latent syphilis: 23		
	Patients with late latent syphilis: 44	Late latent syphilis ($\mathrm{n}=12$) Sensitivity: 65.9\%	
	Reference standard: Reactive FTA-ABS, TPHA, and VDRL serologic tests plus a diagnosis of syphilis (signs and symptoms not reported in the paper). Early latent was defined as <1 year and late latent syphilis defined as >1 year		
	Cross-sectional study	Recent secondary syphilis ($\mathrm{n}=17$) Sensitivity: 100\%	(22)
	Patients with recent secondary syphilis: 17		
	Patients with recurrent secondary syphilis: 44	Recurrent secondary syphilis ($\mathrm{n}=44$)	
	Patients with early latent syphilis: 34	Sensitivity: 100%	
	Patients with late latent syphilis: 44	Early latent syphilis ($\mathrm{n}=34$) Sensitivity: 100\%	

CAPTIA Syphilis M serologic tests plus clinical findings consistent with secondary syphilis

Prospective study
Patients with secondary syphilis: 68
Patients with early latent syphilis: 72

Reference standard: (1) Secondary syphilis-based on clinical features consistent with secondary syphilis (lab confirmation and clinical features not reported in the paper); (2) early latent syphilis-reactive antitreponemal EIA, TPPA, or antitreponemal IgM EIA in the absence of clinical signs of infection in patients who had had nonreactive serology within the preceding 2 years or were known to have had recent sexual contact with an individual infected with syphilis.

Late latent syphilis $(\mathrm{n}=44)$
Sensitivity: 63.6\%

Secondary syphilis ($\mathrm{n}=68$)
Sensitivity: 100\%
Early latent syphilis $(\mathrm{n}=72)$
Sensitivity: 100\%

[^0]Supplementary Table 2. Performance characteristics of treponemal serologic tests used for the diagnosis of syphilis

Assay	Study summary and reference standard	Performance characteristics*	Reference
ADVIA Centaur ${ }^{\dagger}$ Siemens Medical Solutions USA, Inc 40 Liberty Blvd Malvern, PA 19355	Prospective cross-sectional study Patients with primary syphilis: 55 Patients with secondary syphilis: 98 Patients with early latent syphilis: 41 Patients with late latent syphilis: 68 Reference standard for primary syphilis: Presence of a lesion or chancre with visible spirochetes on darkfield microscopy or the absence of spirochetes on darkfield microscopy plus reactive treponemal and nontreponemal serologic tests Reference standard for secondary syphilis: Mucocutaneous lesions with reactive treponemal (EIA or TPPA) and nontreponemal (RPR) serologic tests Reference standard for early latent syphilis: Absence of symptoms plus reactive treponemal and nontreponemal serologic tests or two reactive treponemal serologic tests and no history of prior syphilis or prior sexual contact with an individual with early syphilis within the past 12 months or prior nonreactive serology within the past 12 months Reference standard for late latent syphilis: Absence of symptoms plus reactive treponemal (EIA or TPPA) and nontreponemal (RPR) serologic tests or two reactive treponemal serologic tests, no history of prior syphilis, no serologic test results on the past 12 months, and no sexual contact with an individual with early latent syphilis in the past 12 months	```Overall sensitivity (\(\mathrm{N}=262\)): \(97.3 \% ~(95 \% \mathrm{CI}\) : 94.6\%-98.9\%) Overall specificity (\(\mathrm{N}=403\)): \(95.5 \%\) (\(95 \% \mathrm{CI}\) : \(93 \%-\) 97.3\%) Primary syphilis (\(\mathrm{n}=55\)) Sensitivity: 94.5\% (95\% CI: 84.9\%-98.9\%) Secondary syphilis (\(\mathrm{n}=98\)) Sensitivity: 100\% (95\% CI: 96.2\%-100\%) Early latent syphilis (\(\mathrm{n}=41\)) Sensitivity: 100\% (95\% CI: 90.7\%-100\%) Late latent syphilis (\(\mathrm{n}=68\)) Sensitivity: \(94.1 \%\) (\(95 \%\) CI: \(85.6 \%-98.4 \%\))```	(24)
ADVIA Centaur Syphilis and Atellica IM Syphilis (Syph)	Prospective and retrospective cross-sectional clinical trial study for submission to FDA ${ }^{\S}$ Patient samples collected from total study population: 2108	Patient samples collected from total study population ($\mathrm{N}=2108$) PPA: 97.9% (95% CI: $96.6 \%-98.8 \%$) PNA: 99.4% (95\% CI: $98.8 \%-99.7 \%$)	$(25)^{\text {IT }}$

Assay	Study summary and reference standard	Performance characteristics*	Reference
Siemens	Apparently healthy individuals: 806 (including 399 nonpregnant people, 332 pregnant people, and 75 pediatric	Apparently healthy individuals ($\mathrm{N}=806$)	
	patients)	Non-pregnant people ($\mathrm{n}=399$)	
	Expected positive population: 561 (including 272 TPPA	PPA: Not applicable	
	reactive and 285 from patients who had been medically diagnosed with syphilis)	PNA: 98.2% ($389 / 396 ; 3$ samples were reactive on both tests)	
	Intended use population: 741	Pregnant people ($\mathrm{n}=332$)	
		PPA: Not applicable	
	Reference standard: Commercially available syphilis assay (not reported) and previous laboratory testing.	PNA: 99.7% (329/330; 1 sample was reactive on both tests and 1 sample was excluded because it was indeterminate on the predicate device)	
	Stage of syphilis was not reported.	Pediatric patients ($\mathrm{n}=75$)	
		PPA: Not applicable	
		PNA: 98.6% ($73 / 74 ; 1$ sample was reactive on both tests)	
		Expected positive population ($\mathrm{N}=561$)	
		PPA: 99.4% (95\% CI: $98.4 \%-99.9 \%$)	
		PNA: 100% (95\% CI: $85.2 \%-100 \%$)	
		Intended use population ($\mathrm{N}=741$)	
		PPA: 98.2% (95\% CI: $94.7 \%-99.6 \%$)	
		PNA: 98.4\% (95\% CI: $97.1 \%-99.3 \%)$	
Architect Syphilis TP Abbott Laboratories 100 Abbott Park Rd Abbott Park, IL 60064	Prospective and retrospective cross-sectional clinical trial study for submission to FDA	Samples from intended use population ($\mathrm{N}=1145$)	(26) ${ }^{\text {8 }}$
		PPA: 96.2% (95\% CI: $92 \%-98.3 \%)$	
		PNA: 99\% (95\% CI: $98.1 \%-99.4 \%$)	
	Patient samples collected from intended use population:		
	1145	Preselected patient samples ($\mathrm{N}=406$)	
	Preselected patient samples reactive in treponemal serologic	Patients with reactive serology for syphilis ($\mathrm{n}=386$)	
	tests: 406 (including 20 pregnant women)	PPA: 98.9% (95\% CI: $97.2 \%-99.6 \%$)	
	Apparently healthy individuals: 480	PNA: 92.3\% (95\% CI: $75.9 \%-97.9 \%$)	
	Patients with primary treated syphilis: 44	Pregnant women with reactive serology for syphilis (n	
	Patients with primary untreated syphilis: 25	= 20)	
	Patients with secondary treated syphilis: 29	PPA: 100% (95\% CI: $83.9 \%-100 \%$)	
	Patients with secondary untreated syphilis: 27	PNA: Not applicable	

Page 14 of 85

Assay	Study summary and reference standard	Performance characteristics*	Reference
	Patients with latent treated syphilis: 25 Patients with latent untreated syphilis: 29 Reference standard: Chemiluminescent immunoassay, RPR, and TPPA. Two out of three tests must be reactive for a sample to be considered reactive Stage of syphilis determined by a licensed physician based on the clinical symptoms, medical history, and laboratory test results at the time of diagnosis	Clinically diagnosed syphilis patients $(\mathrm{N}=179)$ Primary treated $(\mathrm{n}=44)$: 75% agreement Primary untreated $(\mathrm{n}=25): 100 \%$ agreement Secondary treated $(\mathrm{n}=29): 100 \%$ agreement Secondary untreated ($\mathrm{n}=27$): 100% agreement Latent treated $(\mathrm{n}=25)$: 100% agreement Latent untreated $(\mathrm{n}=25): 100 \%$ agreement All phases treated $(\mathrm{n}=29): 100 \%$ agreement	
AtheNA MultiLyte T. pallidum IgG Plus Test System ZEUS Scientific 199 \& 200 Evans Way Branchburg, NJ 08876	Retrospective cross-sectional clinical trial study for submission to the FDA Patient serum samples: 280 Previously characterized serum samples by syphilis stage Primary treated syphilis: 11 Secondary treated syphilis: 39 Secondary untreated syphilis: 43 Latent treated syphilis: 52 Latent untreated syphilis: 11 Congenital syphilis: 3 Reference standard for patient serum samples: Reactive RPR and TPPA Reference standard for clinically characterized serum sample: CDC specimen bank	Patient serum samples $(\mathrm{N}=280)$ PPA: 96.3% (95% CI: $81 \%-99.9 \%$) PNA: 96% (95% CI: $92.8 \%-98.1 \%$) Primary treated $(\mathrm{n}=11): 90.9 \%$ agreement $(95 \% \mathrm{CI}$: $58.7 \%-99.8 \%)$ Secondary treated $(\mathrm{n}=39): 100 \%$ agreement $(95 \%$ CI: $92.6 \%-100 \%$) Secondary untreated $(\mathrm{n}=43)$: 93% agreement $(95 \%$ CI: 80.8\%-98.5\%) Latent treated $(\mathrm{n}=52): 86.5 \%$ agreement $(95 \% \mathrm{CI}$: $74.2 \%-94.4 \%)$ Latent untreated $(\mathrm{n}=11): 54.5 \%$ agreement $(95 \% \mathrm{CI}$: $23.4 \%-83.3 \%)$ Congenital syphilis $(\mathrm{n}=3)$: 66.7% agreement $(95 \%$ CI: 9.4\%-99.2\%)	27) ${ }^{\text {IT}}$
CAPTIA Syphilis-G Assay** Trinity Biotech USA Inc 2823 Girts Rd Jamestown, NY 14701	Cross-sectional study Unselected screening specimens: 1,617 Known specimen panel: 114 Reference standard: VDRL reactive	Unselected screening specimens ($\mathrm{N}=1,617$) Sensitivity: 92.1% Specificity: 99.2% Retesting of unselected screening specimens Sensitivity: 92.1% Specificity: 99.2\% Primary treated $(\mathrm{n}=8): 100 \%$ agreement	(28)

Congenital syphilis treated ($\mathrm{n}=1$): 100% agreement
Unknown syphilis stage treated ($\mathrm{n}=2$): 100%
agreement
Unknown treatment status ($\mathrm{n}=13$): 84.6% agreement

Cross-sectional study	Unselected screening specimens ($\mathrm{N}=1,184$)	(29)
	Sensitivity: 91.4\%	
Unselected screening specimens: 1,184	Retesting of unselected screening specimens	
Known specimen panel: 101 (89 were classified as primary, secondary, early latent, or late latent)	Sensitivity: 92.4\%	
Unselected screening serum samples reference standard:	Known specimen panel classified as primary, secondary, early latent, and late latent ($\mathrm{N}=89$)	
ICE Syphilis immunoassay (DiaSorin Molecular LLC),	Primary treated ($\mathrm{n}=17$): 88.2% agreement	
CDRL, TPHA, and FTA-ABS	Primary untreated ($\mathrm{n}=7$): 100% agreement	
	Secondary treated ($\mathrm{n}=21$): 90.5% agreement	
Clinical stage reference standard: Medical diagnosis and	Secondary untreated ($\mathrm{n}=2$): 100% agreement	
syphilis serology. Early latent and late latent cutoff was at	Early latent treated ($\mathrm{n}=9$): 88.9% agreement	
two years, not one year	Early latent untreated ($\mathrm{n}=2$): 100% agreement	
	Late latent treated ($\mathrm{n}=19$): 100% agreement	
	Late latent untreated ($\mathrm{n}=12$): 91.7% agreement	
Retrospective cross-sectional study	Patient serum samples ($\mathrm{N}=169$)	(30)
Patients with untreated syphilis: 96	Primary syphilis ($\mathrm{n}=17$)	
Patients with old syphilis: 63	Sensitivity: 82.3\%	

Assay	Study summary and reference standard	Performance characteristics*	Reference
	Patients with primary treated syphilis: 29	PNA: 95.6\% (95\% CI: 92.6\%-97.6\%)	
	Patients with primary untreated syphilis: 25		
	Patients with secondary treated syphilis: 25	Pregnant women ($\mathrm{N}=301$)	
	Patients with secondary untreated syphilis: 25	PPA: Not applicable	
	Patients with latent treated syphilis: 25	PNA: 100% (95\% CI: 98.8\%-100\%)	
	Patients with latent untreated syphilis: 25		
	Reference standard: Chemiluminescent immunoassay, RPR,	Preselected patient samples ($\mathrm{N}=169$)	
	and TPPA. Two out of three tests must be reactive for a	PPA: 98.7\% (95\% CI: 95.5\%-99.9\%)	
	sample to be considered reactive	PNA: 100\% (95\% CI: 73.5\%-99.6\%)	
	Stage of syphilis determined by a licensed physician based	Clinically diagnosed syphilis patients ($\mathrm{N}=154$)	
	on clinical symptoms, medical history, and laboratory test	Primary treated ($\mathrm{n}=29$): 55.2\% agreement	
	results at the time of diagnosis	Primary untreated ($\mathrm{n}=25$): 100% agreement	
		Secondary treated ($\mathrm{n}=25$): 96% agreement	
		Secondary untreated ($\mathrm{n}=25$): 100% agreement	
		Latent treated ($\mathrm{n}=25$): 100% agreement	
		Latent untreated ($\mathrm{n}=25$): 100% agreement	
Fluorescent Treponemal Antibody- Absorption Test $($ FTA-ABS $){ }^{\dagger}$	Prospective cross-sectional study	Overall sensitivity ($\mathrm{N}=262$): 90.8\% (95\% CI:	(24)
		86.7\%-94\%)	
	Patients with primary syphilis: 55	Overall specificity ($\mathrm{N}=403$): 98% ($95 \% \mathrm{CI}: 96.1 \%-$	
	Patients with secondary syphilis: 98	99.1\%)	
	Patients with early latent syphilis: 41		
	Patients with late latent syphilis: 68	Primary syphilis ($\mathrm{n}=55$)	
		Sensitivity: 78.2% (95\% CI: $65 \%-88.2 \%$)	
	Reference standard for primary syphilis: Presence of a lesion or chancre with visible spirochetes on darkfield microscopy or the absence of spirochetes on darkfield microscopy (or if darkfield microscopy is not performed) plus reactive treponemal and nontreponemal serologic tests	Secondary syphilis ($\mathrm{n}=98$)	
		Sensitivity: 92.8% (95\% CI: $85.7 \%-97 \%$)	
		Early latent syphilis ($\mathrm{n}=41$)	
		Sensitivity: 100% (95\% CI: $90.7 \%-100 \%$)	
	Reference standard for secondary syphilis: Mucocutaneous		
	lesions with reactive treponemal (EIA or TPPA) and nontreponemal (RPR) serologic tests	Late latent syphilis ($\mathrm{n}=68$) Sensitivity: 92.6% (95\% CI: 83.7\%-97.6\%)	

Reference standard for early latent syphilis: Absence of symptoms plus reactive treponemal (EIA or TPPA) and nontreponemal (RPR) serologic tests or two reactive treponemal serologic tests and no history of prior syphilis or prior sexual contact with an individual with early syphilis within the past 12 months or prior nonreactive serology within the past 12 months

Reference standard for late latent syphilis: Absence of symptoms plus reactive treponemal (EIA or TPPA) and nontreponemal (RPR) serologic tests or two reactive treponemal serologic tests, no history of prior syphilis, no serologic test results on the past 12 months, and no sexual contact with an individual with early latent syphilis in the past 12 months

Reference standard for specificity (no syphilis): No diagnosis of syphilis on the day of testing or in the 6 months after the day of specimen collection, no syphilis in the past medical history, no reactive prior syphilis serology (all available lab records reviewed), and at least 4 out of 7 treponemal serologic tests were negative (after testing by CDC reference laboratory)

Retrospective cross-sectional study	Primary syphilis $(\mathrm{n}=50)$ Sensitivity: 90%
Patients with primary syphilis: 50 Patients with secondary syphilis: 43 Patients with latent syphilis: 47 Patients with neurosyphilis: 11	Secondary syphilis $(\mathrm{n}=43)$ Sensitivity: 100%
Reference standard for primary syphilis: Presence of a lesion or chancre plus presence of spirochetes in lesion or lymph node (method to visualize spirochetes was not described) and/or reactive serologic tests	Latent syphilis $(\mathrm{n}=47)$ Sensitivity: 100%

Reference standard for secondary syphilis: Presence of spirochetes in generalized skin lesions or lymph node (method to visualize spirochetes was not described) and/or reactive serologic tests

Reference standard for latent syphilis: Absence of symptoms or a history of syphilis plus reactive serologic tests

Reference standard for neurosyphilis: Reactive FTA or TPHA plus reactive CSF VDRL or mononuclear cell count of >5 cell per μ l of CSF

Retrospective cross-sectional study
Patients with primary syphilis: 55
Patients with secondary syphilis: 39
Patients with latent syphilis: 54
Patients with yaws: 15

Primary syphilis $(\mathrm{n}=55)$
Sensitivity: 84%
Secondary syphilis ($\mathrm{n}=39$)
Sensitivity: 100\%
Latent syphilis ($\mathrm{n}=54$)
Sensitivity: 100\%
Yaws ($\mathrm{n}=15$)
Sensitivity: 93\%

Primary and secondary syphilis combined $(\mathrm{n}=66)$
Sensitivity: 93\%
Specificity: 87\%

Assay	Study summary and reference standard	Performance characteristics*	Reference
Immulite 2000 Syphilis Screen Siemens Medical Solutions USA, Inc 40 Liberty Blvd Malvern, PA 19355	Prospective cross-sectional clinical trial study for submission to FDA Patient samples collected from intended use population: 1,286 (including 281 from patients medically diagnosed with syphilis of unknown stage, 420 patients living with HIV, and 924 samples submitted to laboratories for routine syphilis testing; some samples might overlap categories) Reference standard: Results compared with a commercially available assay	Retrospective serum samples ($\mathrm{N}=1,286$) Medically diagnosed syphilis of unknown stage ($\mathrm{n}=$ 281) PPA: 99.3\% (95\% CI: 97.4\%-99.9\%) PNA: 75% (95% CI: $34.9 \%-96.8 \%$) Patients living with HIV $(\mathrm{N}=420)$ PPA: 99.6% (95% CI: $97.9 \%-100 \%$) PNA: 95.6% (95% CI: $91.1 \%-98.2 \%$) Routine syphilis testing ($\mathrm{N}=924$) PPA: 99.4\% (95\% CI: 98\%-99.9\%) PNA: 99.1% (95% CI: $97.9 \%-99.7 \%$)	(35) ${ }^{\text {IT }}$
LIAISON DiaSorin Molecular LLC 11331 Valley View St Cypress, CA 90630	Prospective cross-sectional study Patients with primary syphilis: 55 Patients with secondary syphilis: 98 Patients with early latent syphilis: 41 Patients with late latent syphilis: 68 Reference standard for primary syphilis: Presence of a lesion or chancre with visible spirochetes on darkfield microscopy or the absence of spirochetes on darkfield microscopy plus reactive treponemal and nontreponemal serologic tests Reference standard for secondary syphilis: Mucocutaneous lesions with reactive treponemal and nontreponemal serologic tests Reference standard for early latent syphilis: Absence of symptoms plus reactive treponemal and nontreponemal serologic tests or two reactive treponemal serologic tests and no history of prior syphilis or prior sexual contact with an	Overall sensitivity ($\mathrm{N}=262$): 96.9\% ($95 \% \mathrm{CI}$: 94.1\%-98.7\%) Overall specificity ($\mathrm{N}=403$): 94.5% ($95 \% \mathrm{CI}$: 91.8\%-96.5\%) Primary syphilis ($\mathrm{n}=55$) Sensitivity: 96.4\% (95\% CI: 94.5\%-98.2\%) Secondary syphilis ($\mathrm{n}=98$) Sensitivity: 100% (95% CI: $96.2 \%-100 \%$) Early latent syphilis $(\mathrm{n}=41)$ Sensitivity: 97.6\% (95\% CI: 87.4\%-99.9\%) Late latent syphilis ($\mathrm{n}=68$) Sensitivity: 96.2\% (95\% CI: 83.7\%-97.6\%)	(24)

individual with early syphilis within the past 12 months or prior nonreactive serology within the past 12 months

Reference standard for late latent syphilis: Absence of symptoms plus reactive treponemal and nontreponemal serologic tests or two reactive treponemal serologic tests, no history of prior syphilis, no serologic test results on the past 12 months, and no sexual contact with an individual with early latent syphilis in the past 12 months

Reference standard for specificity (no syphilis): No diagnosis of syphilis on the day of testing or in the 6 months after the day of specimen collection, no syphilis in the past medical history, no reactive prior syphilis serology (all available lab records reviewed), and at least 4 out of 7 treponemal serologic tests were negative (after testing by

CDC reference laboratory)

Prospective and retrospective cross-sectional clinical trial study for submission to FDA

Apparently healthy non-pregnant people: 992
Pregnant people: 200
People living with HIV: 200
People diagnosed with syphilis: 51
Intended use population: 999

Reference standard: Trinity Captia Syphilis - G assay.
Apparently healthy non-pregnant people
PPA: 62.7% (95% CI: $51.7 \%-93.0 \%$)
PNA: 99.3% (95% CI: $98.5 \%-99.8 \%$)
Pregnant people (N=200)
PPA: 100% (95% CI: $39.8 \%-100 \%$)
PNA: 100% (95% CI: $98.1 \%-100 \%)$
People living with HIV (N=200)
PPA: $75.8 \% ~(95 \% ~ C I: ~$
PN.8\%-83.5\%)
PNA: $96.2 \% ~(95 \% ~ C I: ~$
$90.4 \%-98.9 \%)$

> People diagnosed with syphilis (N=51)
> PPA: 97.9% (95% CI: $89.0 \%-99.9 \%)$
> PNA: $100 \%(95 \%$ CI: $2.5 \%-100 \%)$

Intended use population ($\mathrm{N}=999$)
PPA: 55\% (95\% CI: $38.9 \%-70.7 \%$)
PNA: 98.9\% (95\% CI: 98.0\%-99.5\%)

Lumipulse G TP-	Prospective and retrospective cross-sectional clinical trial	Samples from intended use population ($\mathrm{N}=1,290$)	(37) ${ }^{\text {I }}$
N	study for submission to FDA	PPA: 92.7\% (95\% CI: $88.6 \%-95.4 \%$)	
Fujirebio US, Inc		PNA: 99.6\% (95\% CI: 99\%-99.9\%)	
205 Great Valley	Patient samples collected from intended use population:		
Pkwy	1,290	Retrospective serum samples ($\mathrm{N}=1,472$)	
Malvern, PA	Retrospective samples: 1,472 (including 379 pregnant	Pregnant women ($\mathrm{N}=379$)	
19355	women, 520 patients living with HIV, 130 samples known	PPA: 96.8\% (95\% CI: 91.1\%-98.9\%)	
	to be reactive in treponemal serologic tests, 68 samples from a research facility from patients clinically diagnosed with	PNA: 96.8\% (95\% CI: $94.1 \%-98.3 \%)$	
	syphilis, and 375 samples submitted to laboratories for	Patients living with HIV ($\mathrm{N}=520$)	
	routine syphilis testing)	PPA: 90.3\% (95\% CI: 85.9\%-93.4\%)	
	Apparently healthy individuals: 474	PNA: 97.5\% (95\% CI: 95\%-98.8\%)	
	Patients with primary treated syphilis: 2	Reactive by previous laboratory testing ($\mathrm{n}=130$)	
	Patients with primary untreated syphilis: 27	PPA: 99.2\% (95\% CI: 94.6\%-99.8\%)	
	Patients with secondary treated syphilis: 25	PNA: 100% (95\% CI: $67.6 \%-100 \%$)	
	Patients with secondary untreated syphilis: 30		
	Patients with latent treated syphilis: 5	Routine syphilis ($\mathrm{N}=375$)	
	Patients with latent untreated syphilis: 200	PPA: 91.2\% (95\% CI: $77 \%-97 \%$)	
		PNA: 99.7% (95\% CI: $98.4 \%-99.9 \%$)	
	Reference standard: Treponemal EIA, RPR, and TPPA. Two out of three tests must be reactive for a sample to be considered reactive	Medically diagnosed syphilis of unknown stage ($\mathrm{N}=$ 68)	

Assay	Study summary and reference standard	Performance characteristics*	Reference
	Stage of syphilis determined by a licensed physician based on clinical symptoms, medical history, and laboratory test results at the time of diagnosis	PPA: 98.2\% (95\% CI: 90.6\%-99.7\%) PNA: 91.7% (95% CI: $64.6 \%-98.5 \%$) Clinically diagnosed syphilis patients ($\mathrm{N}=289$) Primary treated ($\mathrm{n}=2$): 100% agreement Primary untreated ($\mathrm{n}=27$): 100% agreement Secondary treated ($\mathrm{n}=25$): 100% agreement Secondary untreated ($\mathrm{n}=30$): 100% agreement Latent treated ($\mathrm{n}=5$): 100% agreement Latent untreated ($\mathrm{n}=200$): 91.5% agreement	
Microhemagglun -tination Assay for Antibodies to Treponema pallidum (MHA$\mathrm{TP})^{\dagger \dagger}$	Cross-sectional study Patients with primary syphilis: 109 Reference standard: Darkfield microscopy	Sensitivity: 72.5\%	(4)
	Prospective cross-sectional study Patient serum samples: 510 (including 128 from patients with primary syphilis, 243 with secondary syphilis, and 139 with early latent syphilis) Reference standard: Darkfield microscopy, RPR, FTA-ABS	Primary syphilis ($\mathrm{n}=128$) Sensitivity: 88.6\% Secondary syphilis $(\mathrm{n}=243)$ Sensitivity: 98.8\% Early latent syphilis ($\mathrm{n}=139$) Sensitivity: 100\%	(38)
	Retrospective cross-sectional study Serum from patients with syphilis: 328 (including 78 from patients with primary syphilis, 89 with secondary syphilis, 103 with early latent syphilis, 10 from neurosyphilis, 21 from cardiovascular syphilis, and 25 from patients with old syphilis)	Primary syphilis $(\mathrm{n}=78)$ Sensitivity: 88.6\% Secondary syphilis ($\mathrm{n}=89$) Sensitivity: 100\% Early latent syphilis ($\mathrm{n}=103$) Sensitivity: 99\%	(39)

Reference standard: Hemagglutination treponemal test for Cardiovascular syphilis ($\mathrm{n}=21$)
syphilis, MHA-TP, FTA-ABS, and VDRL. Darkfield
Sensitivity: 89.5\%
microscopy.

Old syphilis ($\mathrm{n}=25$)
Sensitivity: 100\%
Results for neurosyphilis presented in Supplementary Table 2

Retrospective cross-sectional study	Primary syphilis ($\mathrm{n}=24)$ Sensitivity: 45.9%	
Serum from patients with syphilis: 75 (including 24 from patients with primary syphilis, 20 with secondary syphilis,	Secondary syphilis ($\mathrm{n}=20$) 27 with latent syphilis, 3 from neurosyphilis, and 1 from cardiovascular syphilis)	Sensitivity: 90%

| Assay | Study summary and reference standard | Performance characteristics* |
| :--- | :--- | :--- | Reference

Page 26 of 85

12 months, and no sexual contact with an individual with early syphilis in the past 12 months

Reference standard for specificity (no syphilis): No diagnosis of syphilis on the day of testing or in the 6 months after the day of specimen collection, no syphilis in the past medical history, no reactive prior syphilis serology (all available lab records reviewed), and at least 4 out of 7 treponemal serologic tests were negative (after testing by CDC reference laboratory)

Prospective observational study
Patients with primary syphilis: 50
Patients with secondary syphilis: 26
Patients with early latent syphilis: 8
Patients with late latent syphilis: 21
Reference standard for primary syphilis: Presence of a lesion or chancre with visible spirochetes and reactive serologic tests

Reference standard for secondary syphilis: Mucocutaneous lesions and reactive serologic tests

Reference standard for early latent syphilis: Reactive serologic tests and nonreactive serologic test in the past 2 years

Reference standard for late latent syphilis: Reactive serologic tests and nonreactive serologic test in the past 2 years or no serologic tests within the past 2 years

Primary syphilis ($\mathrm{n}=50$)
Sensitivity: 96\%
Secondary syphilis ($\mathrm{n}=26$)
Sensitivity: 100\%
Early latent syphilis ($\mathrm{n}=8$)
Sensitivity: 100\%
Late latent syphilis ($\mathrm{n}=21$)
Sensitivity: 100%

Reference standard for secondary syphilis: Mucocutaneous lesions with reactive treponemal and nontreponemal serologic tests

Reference standard for early latent syphilis: Absence of symptoms plus reactive treponemal and nontreponemal serologic tests or two reactive treponemal serologic tests and no history of prior syphilis or prior sexual contact with an individual with early syphilis within the past 12 months or prior nonreactive serology within the past 12 months

Reference standard for late latent syphilis: Absence of symptoms plus reactive treponemal and nontreponemal serologic tests or two reactive treponemal serologic tests, no history of prior syphilis, no serologic test results on the past 12 months, and no sexual contact with an individual with early syphilis in the past 12 months

Retrospective cross-sectional study

Patients with primary syphilis: 52
Reference standard for primary syphilis: Presence of a lesion or chancre, reactive serologic tests, and no reported history of syphilis
Prospective and retrospective cross-sectional clinical trial study for submission to FDA.

Apparently healthy non-pregnant people: 1,655
People suspected of or diagnosed with syphilis: 636
Reference standard: TPPA or TPHA.
Stage of syphilis was not reported.

Late latent syphilis ($\mathrm{n}=68$)
Sensitivity: 98.5% (95% CI: $92.1 \%-99.9 \%$)

Primary syphilis $(\mathrm{n}=52)$
Trep-Sure sensitivity: 53.8% (95% CI: $39.5 \%-67.8 \%$)
RPR sensitivity: 76.9\% (95\% CI: 63.2\%-87.5\%)

Apparently healthy non-pregnant people ($\mathrm{N}=1,655$)
PPA: 100% (95% CI: $79.4 \%-100 \%$)
PNA: 99.8\% (95\% CI: 99.4\%-100\%)
People suspected of or diagnosed with syphilis
($\mathrm{N}=636$)
PPA: 99.5\% (95\% CI: 98.4\%-99.9\%)
PNA: 91.9% (95\% CI: $87.1 \%-95.3 \%)$


```
Primary treated (n = 11): 100% agreement (95% CI:
76.2%-100%)
Secondary treated ( }\textrm{n}=39\mathrm{ ): 100% agreement (95% CI:
92.6%-100%)
Secondary untreated (n = 43): 95.3% agreement (95%
CI: 84.2%-99.4%)
Latent treated ( }\textrm{n}=50\mathrm{ ): 96% agreement (95% CI:
86.3%-99.5%)
Latent untreated ( }\textrm{n}=11\mathrm{ ): 54.5% agreement (95% CI:
23.4%-83.3%)
Congenital syphilis ( }\textrm{n}=3\mathrm{ ): 33.3% agreement (95%
CI: 0.84%-90.6%)
Late latent untreated ( }\textrm{n}=12\mathrm{ ): 91.7% agreement
```

[^1]
Supplementary Table 3. Performance characteristics of combined nontreponemal (lipoidal antigen) and treponemal serologic assays

 used for the diagnosis of syphilis

BioPlex Total testing of samples from patients living with HIV compared two of three tests being reactive ($\mathrm{n}=362$)
PPA: 93.3% (95% CI: $88.2 \%-96.3 \%$)
PNA: 93.9\% (95\% CI: 89.8\%-96.4\%)
BioPlex RPR component testing of samples from patients living with HIV compared with BD MacroVue RPR Card Tests ($\mathrm{N}=362$)
PPA: 85.7\% (95\% CI: 72.2\%-93.3\%)
PNA: 90.6% (95% CI: $86.9 \%-93.4 \%$)
BioPlex Total reactivity compared two of three tests being reactive in medically diagnosed syphilis patients ($\mathrm{n}=156$)
Primary treated ($\mathrm{n}=29$): BioPlex Total reactivity 86.2%; comparator algorithm reactivity 86.2%
Primary untreated ($\mathrm{n}=26$): BioPlex Total reactivity 96.2%; comparator algorithm reactivity 100% Secondary treated ($\mathrm{n}=26$): BioPlex Total reactivity 100%; comparator algorithm reactivity 100% Secondary untreated ($\mathrm{n}=25$): BioPlex Total reactivity 100%; comparator algorithm reactivity 100%
Latent treated ($n=27$): BioPlex Total reactivity 100%; comparator algorithm reactivity 100% Latent untreated ($\mathrm{n}=23$): BioPlex Total reactivity 100%; comparator algorithm reactivity 100% All phases treated ($\mathrm{n}=82$): BioPlex Total reactivity 95.1%; comparator algorithm reactivity 95.1% All phases untreated ($\mathrm{n}=74$): BioPlex Total reactivity 98.6%; comparator algorithm reactivity 100%

PPA: 75\% (95\% CI: 30.1\%-95.5\%)
PNA: 99\% (95\% CI: 97.1\%-95.7\%)

BioPlex RPR component testing of samples from apparently healthy individuals compared with BD Macro-Vue RPR Card Tests ($\mathrm{N}=301$)
PPA: 0\% (95\% CI: 0\%-49\%)
PNA: 98% (95% CI: $95.7 \%-99.1 \%$)
BioPlex RPR reactivity compared with BD Macro-
Vue RPR Card Tests in medically diagnosed syphilis patients ($\mathrm{N}=156$)
Primary treated ($\mathrm{n}=29$): BioPlex RPR reactivity
65.5\%; RPR card reactivity 75.9%

Primary untreated ($\mathrm{n}=26$): BioPlex RPR reactivity
92.3%; RPR card reactivity 88.5%
Secondary treated ($\mathrm{n}=26$): BioPlex RPR reactivity
88.5\%; RPR card reactivity 80.8%

Secondary untreated ($\mathrm{n}=25$): BioPlex RPR reactivity
100%; RPR card reactivity 100%
Latent treated ($\mathrm{n}=27$): BioPlex RPR reactivity
66.7%; RPR card reactivity 66.7%
Latent untreated ($\mathrm{n}=23$): BioPlex RPR reactivity
95.7%; RPR card reactivity 95.7%
All phases treated ($\mathrm{n}=82$): BioPlex RPR reactivity 73.2%; RPR card reactivity 74.4%
All phases untreated ($\mathrm{n}=74$): BioPlex RPR reactivity 95.9\%; RPR card reactivity 95%
*Performance characteristics are stratified by syphilis stage if available. Otherwise, the performance characteristics are derived from data that did not specify the stage of syphilis.
${ }^{\text {*}}$ Unpublished data from the FDA 510(k) Substantial Equivalence Determination Decision Summary.

Supplementary Table 4. Performance characteristics of nontreponemal (lipoidal antigen) tests used to detect syphilis reactive antibodies in the cerebral spinal fluid

Assay	Study summary and reference standard	Performance characteristics	Reference
Rapid Plasma Reagin (RPR)	Retrospective cross-sectional study	Combined data from asymptomatic and symptomatic neurosyphilis patients ($\mathrm{N}=25$)	(14)
	Patients with neurosyphilis: 25 (24 patients were considered	CSF RPR sensitivity: 75%	
	to have neurosyphilis, from which 8 had symptomatic neurosyphilis [disease meningovascular $=6$; meningitis $=1$;	CSF RPR specificity: 99.3\%	
	cranial neuritis $=1$], 16 asymptomatic neurosyphilis [no neurologic symptoms or signs], and 1 patient with all clinical and laboratory criteria of neurosyphilis, except	Asymptomatic neurosyphilis patients ($\mathrm{n}=16$) CSF RPR sensitivity: 68.8%	
	increased proteins; all 25 were living with HIV)	Symptomatic neurosyphilis patients ($\mathrm{n}=8$) CSF RPR sensitivity: 100%	
	Syphilis-positive control patients: 163 patients with syphilis based on serology and no signs of neurosyphilis		
	Syphilis-negative control patients with other neurologic disorders: 126		
	Reference standard: Reactive FTA-ABS, increased CSF protein $\geq 45 \mathrm{mg} / \mathrm{dL}$, and CSF pleocytosis $\geq 10 \mathrm{cell} / \mathrm{mm}^{3}$		
	Prospective cross-sectional study	Combined data from asymptomatic and symptomatic neurosyphilis patients ($\mathrm{N}=210$)	(48)
	Patients with asymptomatic neurosyphilis: 56	CSF RPR sensitivity: 76.2% (95\% CI: $70.2 \%-82.2 \%$)	
	Patients with symptomatic neurosyphilis: 154	CSF RPR specificity: 93.4% (95\% CI: $91.4 \%-95.4 \%$)	
	Asymptomatic neurosyphilis reference standard: ≥ 10 white	CSF RPR-V* sensitivity: 79.2% (95% CI: $73.5 \%-$ 85.5%)	
	blood cells in the CSF and reactive CSF TPPA with no blood contamination	CSF RPR-V* specificity: 92.7% (95% CI: $90.7 \%-$ 94.7%)	
		Asymptomatic neurosyphilis patients ($\mathrm{n}=56$)	

Assay	Study summary and reference standard	Performance characteristics	Reference
	Symptomatic neurosyphilis reference standard: Reactive	CSF RPR sensitivity: 60.7\% (95\% CI: 50.7\%-70.7\%)	
	CSF TPPA with no blood contamination and with clinical signs and symptoms	CSF RPR specificity: 82.6% (95\% CI: $80.6 \%-84.6 \%$)	
		CSF RPR-V* sensitivity: 69.6% (95% CI: $59.6 \%-$ 79.6\%)	
		CSF RPR-V* specificity: 87.8% (95% CI: $79.8 \%-$ 83.8\%)	
		Symptomatic neurosyphilis patients ($\mathrm{n}=154$) CSF RPR sensitivity: 81.8% (95% CI: $75.8 \%-87.8 \%$) CSF RPR specificity: 90.2% (95% CI: $88.2 \%-92.2 \%$)	
		CSF RPR-V* sensitivity: 83.1% (95% CI: $77.1 \%-$ 89.1\%) CSF RPR-V* specificity: 89.1% (95% CI: $87.1 \%-$ 91.1\%)	
	Retrospective cross-sectional study	Neurosyphilis patients ($\mathrm{N}=149$) CSF RPR sensitivity: 56.4\% (95\% CI: $40.8 \%-72 \%$)	(49)
	Patients with neurosyphilis: 149 Patients with symptomatic neurosyphilis: 33	CSF RPR specificity: 100% (95% CI: $100 \%-100 \%$)	
	Neurosyphilis reference standard: Reactive CSF FTA-ABS and >20 white blood cells in the CSF	CSF RPR-V* sensitivity: 59\% (95\% CI: 43.6\%74.4%) CSF RPR-V* specificity: 98.4% (95% CI: $95 \%-$ 100%)	
	Symptomatic neurosyphilis reference standard: Vision or hearing loss with clinical or serologic evidence of neurosyphilis	Symptomatic neurosyphilis patients ($\mathrm{n}=33$) CSF RPR sensitivity: 51.5% (95% CI: $34.4 \%-68.6 \%$) CSF RPR specificity: 89.7% (95% CI: $84.2 \%-95.2 \%$)	
		CSF RPR-V* sensitivity: 57.6% (95% CI: $40.7 \%-$ 74.5\%) CSF RPR-V* specificity: 84.5% (95% CI: $77.9 \%-$ 91.1\%)	

Assay	Study summary and reference standard	Performance characteristics	Reference
	Reference standard: Reactive FTA-ABS, increased CSF protein $\geq 45 \mathrm{mg} / \mathrm{dL}$, and CSF pleocytosis ≥ 10 cell $/ \mathrm{mm}^{3}$		
	Prospective cross-sectional study	Combined data from asymptomatic and symptomatic neurosyphilis patients $(\mathrm{N}=210)$	(48)
	Patients with asymptomatic neurosyphilis: 56 Patients with symptomatic neurosyphilis: 154	CSF VDRL sensitivity: 81.4% (95% CI: $75.4 \%-$ 87.4\%) CSF VDRL specificity: 90.3% (95% CI: $88.3 \%-$ 92.3\%)	
	Asymptomatic neurosyphilis reference standard: ≥ 10 white blood cells in the CSF and reactive CSF TPPA with no blood contamination	Asymptomatic neurosyphilis patients ($\mathrm{n}=56$) CSF VDRL sensitivity: 69.6% (95% CI: $59.6 \%-$ 79.6\%)	
	Symptomatic neurosyphilis reference standard: Reactive CSF TPPA with no blood contamination and with clinical signs and symptoms	CSF VDRL specificity: 79.4% (95% CI: $77.4 \%-$ 81.4\%)	
		Symptomatic neurosyphilis patients ($\mathrm{n}=154$) CSF VDRL sensitivity: 85.7% (95% CI: $79.7 \%-$ 91.7\%) CSF VDRL specificity: 86.7% (95% CI: $84.7 \%-$ 88.7\%)	
	Retrospective cross-sectional study	Neurosyphilis patients ($\mathrm{n}=149$) CSF VDRL sensitivity: 71.8% (95% CI: $57.7 \%-$	(49)
	Patients with neurosyphilis: 149	85.9\%)	
	Patients with symptomatic neurosyphilis: 33	CSF VDRL specificity: 98.3% (95\% CI: $95 \%-100 \%$)	
	Neurosyphilis reference standard: Reactive CSF FTA-ABS and >20 white blood cells in the CSF	Symptomatic neurosyphilis patients ($\mathrm{n}=33$) CSF VDRL sensitivity: 66.7% (95% CI: $50.6 \%-$ 82.8\%)	
	Symptomatic neurosyphilis reference standard: Vision or hearing loss with clinical or serologic evidence of neurosyphilis	CSF VDRL specificity: 80.2% (95% CI: $72.9 \%-$ 87.5\%)	

[^2]Research Laboratory; TPHA = T. pallidum hemagglutination assay; MHA-TP = microhemaggluntination assay for antibodies to T. pallidum; NAAT $=$ nucleic acid amplification test
*CSF RPR-V is a modified RPR by diluting it 1:2 in 10% saline to account for the lower concentration of immunoglobulin in CSF compared with serum.

Supplementary Table 5. Performance characteristics of treponemal tests used to detect syphilis reactive antibodies in the cerebral spinal fluid

Assay	Study summary and reference standard	Performance characteristics	Reference
Fluorescent	Retrospective cross-sectional study	Neurosyphilis ($\mathrm{n}=11$)	(32)
Treponemal		CSF FTA-ABS sensitivity: 100%	
Antibody-	Patients with primary syphilis: 50		
Absorption Test	Patients with secondary syphilis: 43	Results for syphilis other than neurosyphilis presented	
(FTA-ABS)	Patients with latent syphilis: 47	in Supplementary Table 1	
	Patients with neurosyphilis: 11		
	Reference standard for primary syphilis: Presence of a lesion or chancre plus presence of spirochetes in lesion or lymph node (method to visualize spirochetes was not described) and/or reactive serologic tests		
	Reference standard for secondary syphilis: Presence of spirochetes in generalized skin lesions or lymph node (method to visualize spirochetes was not described) and/or reactive serologic tests		
	Reference standard for latent syphilis: Absence of symptoms or a history of syphilis plus reactive serologic tests		
	Reference standard for neurosyphilis: Reactive FTA-ABS or TPHA plus reactive CSF VDRL or mononuclear cell count of >5 cell per μ of CSF		

Assay	Study summary and reference standard	Performance characteristics	Reference
Microhemagglunt ination Assay for Antibodies to Treponema pallidum (MHATP)	Retrospective cross-sectional study Serum from patients with syphilis: 75 (including 24 from patients with primary syphilis, 20 with secondary syphilis, 27 with latent syphilis, 3 with neurosyphilis, and 1 with cardiovascular syphilis)	Neurosyphilis ($\mathrm{n}=3$) CSF MHA-TP sensitivity: 66.7% Results for syphilis other than neurosyphilis presented in Supplementary Table 1	(40)
Treponema pallidum Passive Particle Agglutination (TPPA)	Serum from patients without syphilis: 222 Reference standard: CSF FTA-ABS Prospective cross-sectional study	Training dataset compared with T. pallidum detected in CSF by NAAT	(50)
	Two data sets Training data set (CSF samples from individuals enrolled in a study of CSF abnormalities in syphilis; $\mathrm{n}=191$), including 45 with T. pallidum detected in CSF by NAAT and 40 with symptoms Validation data set (study participants enrolled after the last training sample was collected; $\mathrm{n}=380$), including 41 with T. pallidum detected in CSF by NAAT and 95 with symptoms	CSF TPPA sensitivity: 75.6% (95% CI: 63.0\%88.1\%) CSF TPPA specificity with a titer $\geq 1: 160: 63.0 \%$ (95\% CI: $55.2 \%-70.8 \%$) CSF TPPA specificity with a titer $\geq 1: 320: 73.3 \%$ (95\% CI: 66.1\%-80.5\%) CSF TPPA specificity with a titer $\geq 1: 640: 81.5 \%$ (95\% CI: $75.2 \%-87.8 \%$)	
	Reference standard: CSF VDRL positive or T. pallidum detected in CSF or new vision or hearing loss with clinical or serologic evidence of syphilis	CSF FTA-ABS sensitivity: 66.7% (95% CI: $52.9 \%-$ 80.4\%) CSF VDRL sensitivity: 58.9\% (95\% CI: 34.3\%63.5%)	
		Training dataset compared with new vision or hearing loss CSF TPPA sensitivity: 77.5% (95\% CI: 64.6\%90.4\%) CSF TPPA specificity with a titer $\geq 1: 160: 63.4 \%$ (95\% CI: 55.5\%-71.3\%) CSF TPPA specificity with a titer $\geq 1: 320: 75.4 \%$ (95\% CI: 68.3\%-82.5\%) CSF TPPA specificity with a titer $\geq 1: 640: 85.2 \%$ (95% CI: $79.4 \%-91.0 \%$)	

CSF FTA-ABS sensitivity: 77.5\% (95\% CI: 64.6\%90.4\%)

CSF VDRL sensitivity: 67.5\% (95\% CI: 53.0\%82.0\%)

Training dataset compared with reactive CSF VDRL CSF TPPA sensitivity: 95.0% (95% CI: $89.5 \%-100 \%$)
CSF TPPA specificity with a titer $\geq 1: 160: 75.6 \%$ (95\% CI: 68.2\%-83.0\%)
CSF TPPA specificity with a titer $\geq 1: 320: 86.3 \%$ (95\% CI: 80.4\%-92.2\%)
CSF TPPA specificity with a titer $\geq 1: 640: 93.9 \%$ (95% CI: $89.8 \%-98.0 \%$)

CSF FTA-ABS sensitivity: 98.3% (95% CI: $95.0 \%-$ 100\%)

Validation dataset compared with T. pallidum detected in CSF by NAAT
CSF TPPA specificity with a titer $\geq 1: 640: 93.8 \%$ (95\% CI: 91.2\%-96.4\%)

CSF VDRL specificity: 91.2% ($95 \% \mathrm{CI}$: 88.1% 94.2\%)

Validation dataset compared with new vision or hearing loss
CSF TPPA specificity with a titer $\geq 1: 640: 93.3 \%$ (95\% CI: 90.4\%-96.2\%)

CSF VDRL specificity: 90.2\% (95\% CI: 86.7\%93.6\%)

Validation dataset compared with reactive CSF VDRL

Assay Study summary and reference standard		Performance characteristics	Reference
		$\begin{aligned} & \text { CSF TPPA specificity with a titer } \geq 1: 640: 97.0 \% \\ & \text { (95\% CI: } 95.2 \%-98.8 \% \text {) } \end{aligned}$	
No difference in sensitivity or specificity based on HIV status			
Abbreviations: CSF = cerebral spinal fluid; RPR = rapid plasma reagin; FTA-ABS = fluorescent treponemal antibody-absorption; CI = confidence interval; TPPA $=$ T. pallidum particle agglutination; TRUST $=$ Toluidine Red Unheated Serum Test; VDRL $=$ Venereal Disease Research Laboratory; $\mathrm{TPHA}=T$. pallidum hemagglutination assay; $\mathrm{MHA}-\mathrm{TP}=$ microhemaggluntination assay for antibodies to T. pallidum; NAAT $=$ nucleic acid amplificatio test			
Supplementary Table 6. Performance characteristics of tests for the direct detection of T. pallidum			
Direct Detection Test Darkfield microscopy	Study Summary and Reference Standard	Performance Characteristics	Reference
	Prospective cross-sectional study	Patients with primary or secondary syphilis ($\mathrm{n}=66$) Positive by darkfield microscopy: 78.8%	
	Patients with primary syphilis: 63 Patients with secondary syphilis: 3 Patients without syphilis: 62	Positive by direct fluorescence microscopy: 72.7\%	
	Syphilitic patients with genital lesion(s): 63	Non-syphilitic patients with genital or anogenital lesions ($\mathrm{n}=62$)	
	Syphilitic patients with anogenital lesion(s): 3	Positive by darkfield microscopy: 0%	
	Non-syphilitic patients with genital lesion(s): 59 Non-syphilitic patients with anogenital	Positive by direct fluorescence microscopy: 0%	
	lesion(s): 3	Results were not grouped by stage of syphilis or anatomic site of lesion	
	Specimen type for darkfield microscopy: Lesion exudate		
	Tests performed: Darkfield microscopy, direct fluorescence microscopy using H9-1 monoclonal antibody to $47-58 \mathrm{kDa}$ tp protein, RPR serology		

Syphilis diagnosis: Clinical presentation and
RPR serology

Prospective cross-sectional study	Patients with secondary syphilis ($\mathrm{n}=12$)	(51)
	Positive by darkfield microscopy: 58\%	
Patients with secondary syphilis: 12	Positive by PCR: 75\%	
Patients with non-syphilitic lesions: 24	Positive by IHC: 91.7%	
Specimen types: Lesion exudate and biopsy	Patients without syphilis ($\mathrm{n}=24$) Positive by darkfield microscopy: 0%	
Tests performed: Darkfield microscopy, PCR tp47 (amplicons detected by Southern blot for 25 bp region and sequenced), IHC on FFPE using avidin-biotin peroxidase complex technique with polyclonal antibodies (BioCare)	Positive by PCR: 0% Positive by IHC: 0%	
Syphilis diagnosis: Clinical presentation, RPR, and TPHA serology		
Prospective cross-sectional study Two studies with only study A relevant to darkfield microscopy	Patients with skin lesions ($\mathrm{n}=350$) Sensitivity of darkfield microscopy: 73.8\% Specificity of darkfield microscopy: 97.4%	(52)
Study A		
Patients with skin lesion(s): 350		
Stage of syphilis not defined		
Specimen type for darkfield microscopy: Lesion exudate		
Tests performed: Darkfield microscopy, PCR tp47 (amplicons detected by Southern blot for 25 bp region and sequenced),		

immunohistochemistry on FFPE using avidin-
biotin peroxidase complex technique with rabbit polyclonal antibodies

Syphilis diagnosis: Clinical presentation, VDRL, and FTA-ABS serology

Sensitivity and specificity based on clinical diagnosis of syphilis

Prospective cross-sectional study	Patients with primary syphilis assessed by darkfield microscopy ($\mathrm{n}=65$)
Patients with primary syphilis: 87 (specimens from 65 patients used to assess darkfield microscopy)	Positive by darkfield microscopy: 75.4%
Patients with secondary syphilis: 103 (specimens from 44 patients used to assess darkfield microscopy)	Patients with primary syphilis and genital lesions (n =35) Positive by darkfield microscopy: 88.6%
Patients without syphilis: 35 (specimens from	
12 patients used to assess darkfield microscopy)	Patients with primary syphilis and anal lesions (n =
6)	

Secondary syphilis patients with oral lesions: 5	50\%
Secondary syphilis patients with cutaneous	
Secondary syphilis patients with lesions from unknown anatomic site: 4	Patients with secondary syphilis and assessed by darkfield microscopy ($\mathrm{n}=44$)
	Positive by darkfield microscopy: 70.5\%
Non-syphilitic patients with genital lesions: 8 Non-syphilitic patients with anal lesions: 2	Patients with secondary syphilis and genital lesions ($\mathrm{n}=22$)
Non-syphilitic patients with cutaneous lesions:	Positive by darkfield microscopy: 63.6\%
0 -	Patients with secondary syphilis and anal lesions (n
Non-syphilitic patients with lesions from unknown anatomic site: 2	= 3)
	Positive by darkfield microscopy: 66.7%
Specimen type for darkfield microscopy: Lesion exudate	Patients with secondary syphilis and oral lesions (n =5)
	Positive by darkfield microscopy: 100\%
Tests performed: Darkfield microscopy, PCR tp47	
	Patients with secondary syphilis and cutaneous lesions ($\mathrm{n}=10$)
Syphilis diagnosis: Clinical presentation, nontreponemal and treponemal serology (test types not stated)	Positive by darkfield microscopy: 80%
	Patients with secondary syphilis and lesions from unknown anatomic site ($\mathrm{n}=4$)
	Positive by darkfield microscopy: 50\%
	Non-syphilitic patients assessed by darkfield microscopy ($\mathrm{n}=12$)
	Positive by darkfield microscopy: 0%
	Non-syphilitic patients with genital lesions ($\mathrm{n}=8$)
	Positive by darkfield microscopy: 0%
	Non-syphilitic patients with anal lesions ($\mathrm{n}=2$) Positive by darkfield microscopy: 0\%
	Positive by darkfield microscopy: 0\%

Prospective cross-sectional study	Patients with primary or secondary syphilis $(\mathrm{N}=30) \quad$ (54) Positive by darkfield microscopy: 96.7%
Primary syphilis patients: 22 Secondary syphilis patients: 8 Of the 30 patients with syphilis, 24 had genital lesions, 5 had anal lesions and 1 had cutaneous lesions Non-syphilitic patients: 31 Of the 30 patients without syphilis, 20 had genital lesions, 6 had anal lesions and 5 had oral lesions	Non-syphilitic patients ($\mathrm{n}=31$) Positive by darkfield microscopy: 6.5\%
Specimen type for darkfield microscopy: Lesion exudate Tests performed: Darkfield microscopy and direct fluorescence microscopy using H9-1 monoclonal antibody to $47-58 \mathrm{kDa}$ tp protein	
Syphilis diagnosis: Clinical presentation, nontreponemal (VDRL) and treponemal serology (FTA-ABS)	
Retrospective cross-sectional study Patients with syphilis: 30	Patients with primary syphilis assessed by darkfield microscopy ($\mathrm{n}=3$) Positive by darkfield microscopy: 100\%
Specimens from patients with primary syphilis: 5 (3 specimens used to assess darkfield microscopy) Specimens from patients with secondary syphilis: 31 (14 specimens used to assess darkfield microscopy)	Patients with secondary syphilis assessed by darkfield microscopy ($\mathrm{n}=14$) Positive by darkfield microscopy: 64.3%

Page 46 of 85

```
Note: More than one specimen was obtained
from a patient, but the number of specimens per
patient was not defined
Specimen type for darkfield microscopy: Lesion
exudate
Tests performed: Darkfield microscopy, avidin-
biotin-peroxidase complex, indirect
immunoperoxidase, and FTA-ABS
Complement
Syphilis diagnosis: Clinical presentation,
nontreponemal (VDRL) and treponemal
serology (FTA-ABS, TPHA)
```


Syphilis diagnosis: Clinical presentation and nontreponemal (VDRL) serology

Prospective cross-sectional study Amniotic fluid from pregnant women with primary

Pregnant women with primary syphilis: 6
Pregnant women with secondary syphilis: 12
Pregnant women with early latent syphilis: 6
Specimen type for darkfield microscopy: Amniotic fluid

Tests performed: Darkfield microscopy, rabbit infectivity test, PCR for Tp47 gene with Southern blot confirmation

Syphilis diagnosis: Clinical presentation, nontreponemal (VDRL), and treponemal (MHA-TP) serology

Immunofluorescent antibody test staining	Prospective cross-sectional study Two studies with both study A and B relevant to immunofluorescent antibody test staining	Patients with skin lesions ($\mathrm{n}=445$) Sensitivity of immunofluorescent antibody test stain: 85.9%
	Specificity of immunofluorescent antibody test Study A stain: 100%	
	Patients with skin lesion(s): 350	
	Study B Patients with skin lesion(s): 95	
	Stage of syphilis not defined in both studies	

Specimen type for immunofluorescent antibody
test staining (both studies): Lesion exudate
Syphilis diagnosis (both studies): Clinical presentation, VDRL, and FTA-ABS serology

Sensitivity and specificity based on clinical diagnosis of syphilis in both studies
Prospective cross-sectional study

Patients with primary or secondary syphilis patients (54)
($\mathrm{n}=30$)
Positive by immunofluorescent antibody test stain: 100\%

Non-syphilitic patients ($\mathrm{n}=31$)
Positive by immunofluorescent antibody test stain:
0\%

Non-syphilitic patients: 31
Of the 30 patients without syphilis, 20 had
genital lesions, 6 had anal lesions and 5 had oral lesions

Specimen type for immunofluorescent antibody test staining: Lesion exudate

Tests performed: Darkfield microscopy and direct fluorescence microscopy using H9-1 monoclonal antibody to $47-58 \mathrm{kDa}$ tp protein

Syphilis diagnosis: Clinical presentation, nontreponemal (VDRL) and treponemal serology (FTA-ABS)

Immunohistochemistry staining	Prospective cross-sectional study	Patients with secondary syphilis (n $=12)$ Positive by immunohistochemistry stain: 91.7\%	

Page 49 of 85

Patients with secondary syphilis: 12
Patients with non-syphilitic lesions: 24

Specimen types: Lesion exudate and biopsy
Tests performed: Darkfield microscopy, PCR tp47 (amplicons detected by Southern blot for 25bp region and sequenced),
immunohistochemistry staining on FFPE using avidin-biotin peroxidase complex technique with polyclonal antibodies (BioCare)

Syphilis diagnosis: Clinical presentation, RPR, and TPHA serology

Retrospective cross-sectional study
Patient with syphilis: 30

Specimens from patients with primary syphilis to assess immunohistochemistry staining: 5 Specimens from patients with secondary syphilis immunohistochemistry staining: 31 Note: More than one specimen was obtained from a patient, but the number of specimens per patient was not defined

Specimen type for immunohistochemistry staining: cutaneous lesion that was FFPE

Tests performed: Darkfield microscopy, immunohistochemistry using avidin-biotinperoxidase complex, indirect

Non-syphilitic patients ($\mathrm{n}=24$)
Positive by immunohistochemistry stain: 0\%

Patients with primary syphilis patients $(\mathrm{n}=5)$
Positive by avidin-biotin-peroxidase complex
staining: 100%

Positive by indirect immunoperoxidase stain: 100%

Patients with secondary syphilis $(\mathrm{n}=31)$
Positive by avidin-biotin-peroxidase complex
staining: 90.3\%
Positive by indirect immunoperoxidase stain: 87.1%
Pos
immunoperoxidase immunohistochemistry,
FTA-ABS, and complement fixation

Syphilis diagnosis: Clinical presentation, nontreponemal (VDRL) and treponemal serology (FTA-ABS, TPHA)

Retrospective cross-sectional study

Secondary syphilis patients: 36 (33 confirmed
by serology and 3 not serologically tested)

Specimen type for immunohistochemistry staining: cutaneous lesion that was FFPE

Tests performed: Immunohistochemistry using rabbit polyclonal antibodies, Dieterle silver stain, nested PCR (Tp1; 228 bp) and seminested (Tp2; 125 bp) PCR for DNA polymerase I

Syphilis diagnosis: Clinical presentation and, in 33/36 patients, syphilis serology (undefined)

Retrospective cross-sectional study

Secondary syphilis patients: 17
Biopsies from patients without syphilis: 14 (similar histologic pattern to secondary syphilis, including 2 with lichen planus, 3 with psoriasis, 3 with psoriasiform dermatitis, 2 with pityriasis lichenoides et varioliformis acuta, 1 with

Patients with secondary syphilis $(\mathrm{n}=35)$
Positive by indirect immunohistochemistry stain: 48.6\%

Patients with secondary syphilis $(\mathrm{n}=17)$
Positive by avidin-biotin-peroxidase complex immunohistochemistry stain: 70.6\%

Non-syphilitic patients $(\mathrm{n}=14)$
Positive by avidin-biotin-peroxidase complex immunohistochemistry stain: 0\%
erythema annulare centrifugum, 2 with acne keloidalis, and 1 with folliculitis decalvans

Specimen type for immunohistochemistry staining: cutaneous lesion that was FFPE

Tests performed: Immunohistochemistry using avidin-biotin-peroxidase complex and Steiner silver stain

Syphilis diagnosis: Clinical presentation, nontreponemal (RPR or VDRL), and treponemal (TPPA or FTA-ABS) serology

Silver stain	Retrospective cross-sectional study	Patients with secondary syphilis ($\mathrm{n}=35$) Positive by Dieterle silver stain: 25.7%	(58)
	Secondary syphilis patients: 36 (33 confirmed by serology and 3 not serologically tested)		
	Specimen type for Dieterle silver staining: cutaneous lesion that was FFPE		
	Tests performed: Immunohistochemistry using rabbit polyclonal antibodies, Dieterle silver stain, nested PCR (Tp1; 228 bp) and seminested (Tp2; 125 bp) PCR for DNA polymerase I		
	Syphilis diagnosis: Clinical presentation and, in 33/36 patients, syphilis serology (undefined)		
	Retrospective cross-sectional study	Patients with secondary syphilis ($\mathrm{n}=17$) Positive by Steiner silver stain: 41.2%	(59)

Page 52 of 85

Secondary syphilis patients: 17
Biopsies from patients without syphilis: 14 (similar histologic pattern to secondary syphilis, including 2 with lichen planus, 3 with psoriasis, 3 with psoriasiform dermatitis, 2 with pityriasis lichenoides et varioliformis acuta, 1 with erythema annulare centrifugum, 2 with acne keloidalis, and 1 with folliculitis decalvans

Specimen type for Steiner silver staining: cutaneous lesion that was FFPE

Tests performed: Immunohistochemistry using avidin-biotin-peroxidase complex and Steiner silver stain

Syphilis diagnosis: Clinical presentation, nontreponemal (RPR or VDRL), and treponemal (TPPA or FTA-ABS) serology

Prospective cross-sectional study	Patients with secondary syphilis $(\mathrm{n}=11)$ Positive by Warthin-Starry silver stain: 9.1%
Secondary syphilis patients: 57 (only 11 lesion biopsies were microscopically examined after	
Warthin-Starry silver staining)	
Specimen type for Warthin-Starry silver	
staining: cutaneous lesion that was FFPE	
Tests performed: Warthin-Starry silver stain,	
nested PCR (Tp1; 228 bp), and RT-PCR for Tp	
polA	

Non-syphilitic patients $(\mathrm{n}=14)$
Positive by Steiner silver stain: 0\%

Syphilis diagnosis: Clinical presentation, nontreponemal (RPR), and treponemal (FTAABS) serology

Retrospective cross-sectional study Patients with secondary or tertiary syphilis ($\mathrm{n}=13$) (61)

Secondary syphilis patients: 6
Tertiary syphilis patients: 7
Non-syphilitic patients: 5

Specimen type for Warthin-Starry silver staining: cutaneous lesion that was FFPE

Tests performed: Warthin-Starry silver stain, nested PCR (Tp1; 228 bp), and nested PCR for Tp47

Syphilis diagnosis: Clinical presentation and treponemal (TPHA and FTA-ABS) serology

NAATs	Prospective cross-sectional study	Patients with suspected primary syphilis $(\mathrm{n}=716)$ Positive by RT-PCR: 13\%	(62)
	Patients with suspected primary syphilis: 716		
	Patients with suspected secondary syphilis: 133	Patients with suspected secondary syphilis $(\mathrm{n}=133)$ Positive by RT-PCR: 25.6\%	
	Specimen type for RT-PCR: dry swab from anogenital lesion or cutaneous lesion		
	Tests performed: Darkfield microscopy on all anogenital lesions and RT-PCR for polA on all anogenital and cutaneous lesions	Patients with primary syphilis defined by clinical standard 1 involving darkfield microscopy ($\mathrm{n}=716$) RT-PCR sensitivity: 87% RT-PCR specificity 93.1%	
	Primary syphilis diagnosis standard 1: Darkfield microscopy positive		

Primary syphilis diagnosis standard 2: Clinical presentation, darkfield microscopy positive, and syphilis serology (not defined)

Primary syphilis diagnosis standard 3: Patients with a positive TPPA result (irrespective of the RPR test result) without a history of syphilis or in patients with an RPR titer of $\geq 1: 8$ and a history of syphilis

Clinical presentation, darkfield microscopy, and syphilis serology (not defined)

Secondary syphilis diagnosis: Clinical presentation with cutaneous or mucosal lesions characteristic of secondary syphilis and RPR titer of $\geq 1: 8$

Patients with primary syphilis defined by clinical standard 2 involving clinical history, darkfield
microscopy, and serology $(\mathrm{n}=716)$
RT-PCR sensitivity: 72.8\%
RT-PCR specificity: 98.8%

Patients with primary syphilis clinical standard 3 involving clinical history and serology $(\mathrm{n}=716)$
RT-PCR sensitivity: 74.5\%
RT-PCR specificity: 97.2%
Patients with secondary syphilis $(\mathrm{n}=133)$
RT-PCR sensitivity: 42.9\%
RT-PCR specificity: 98.2\%

Specimen types for RT-PCR from primary syphilis patients: 8 dry lesion swab, 18 whole blood, 11 serum, and 7 urine

Specimen types for RT-PCR from secondary syphilis patients: 5 dry lesion swab, 31 whole blood, 15 serum, 2 plasma, 6 CSF , and 9 urine

Specimen types for RT-PCR from latent syphilis patients: 6 whole blood, 2 serum, 2 CSF, and 2 urine

Tests performed: Darkfield microscopy on all anogenital lesions and RT-PCR for tp47

Syphilis diagnosis: Clinical presentation, nontreponemal (VDRL), and treponemal (TPHA) serology to determine stage

Whole blood tested from patients with primary
syphilis ($\mathrm{n}=18$)
RT-PCR sensitivity: 28% (95% CI: $10 \%-53 \%$)
Serum tested from patients with primary syphilis (n = 11)
RT-PCR sensitivity: 55\% (95\% CI 23\%-83\%)
Urine tested from patients with primary syphilis (n =7)
RT-PCR sensitivity: 29% (95% CI: $4 \%-71 \%$)

All controls negative
Lesion swab specimens tested from patients with secondary syphilis ($\mathrm{n}=5$)
RT-PCR sensitivity: 20% (95% CI: $0.5 \%-72 \%$)
Whole blood tested from patients with primary syphilis ($\mathrm{n}=31$)
RT-PCR sensitivity: 36% (95% CI: $19 \%-55 \%$)

Serum tested from patients with primary syphilis (n = 15)
RT-PCR sensitivity: 47% (95% CI: $21 \%-73 \%$)

Plasma tested from patients with primary syphilis (n =2)
RT-PCR sensitivity 100% (95% CI: $16 \%-100 \%$)

CSF tested from patients with primary syphilis ($\mathrm{n}=$ 6)

RT-PCR sensitivity: 50\% (95\% CI: 12\%-88\%)

Primary syphilis patients with genital lesions: 35	Patients with primary syphilis and oral lesions ($\mathrm{n}=$ 4)
Primary syphilis patients with anal lesions: 6	Positive by PCR: 50%
Primary syphilis patients with oral lesions: 2	
Primary syphilis patients with cutaneous lesions: 2	Patients with primary syphilis and cutaneous lesions ($\mathrm{n}=2$)
Primary syphilis patients with lesions from unknown anatomic site: 18	Positive by PCR: 100%
Secondary syphilis patients with genital lesions:	Patients with primary syphilis and lesions from unknown anatomic site ($\mathrm{n}=18$)
22	Positive by PCR: 77.8%
Primary syphilis patients with anal lesions: 3	
Primary syphilis patients with oral lesions: 5	Patients with secondary syphilis ($\mathrm{n}=44$)
Primary syphilis patients with cutaneous lesions: 10	Positive by PCR: 86.4\%
Primary syphilis patients with lesions from unknown anatomic site: 4	Patients with secondary syphilis and genital lesions ($\mathrm{n}=22$)
	Positive by PCR: 86.4\%
Non-syphilitic patients with genital lesions: 8	
Non-syphilitic patients with anal lesions: 2	Patients with secondary syphilis and anal lesions (n
Non-syphilitic patients with oral lesions: 0	= 3)
Non-syphilitic patients with cutaneous lesions: 0	Positive by PCR: 66.7\%
Non-syphilitic patients with lesions from unknown anatomic site: 2	Patients with secondary syphilis and oral lesions (n =5)
	Positive by PCR: 80%
Study B	
Primary syphilis patients: 81 (not all tested specimen types tested for all patients)	Patients with secondary syphilis and cutaneous lesions ($\mathrm{n}=10$)
Secondary syphilis patients: 97 (not all tested specimen types tested for all patients)	Positive by PCR: 100%
Latent syphilis patients: 40 (not all tested specimen types tested for all patients)	Patients with secondary syphilis and lesions from unknown anatomic site $(\mathrm{n}=4)$ Positive by PCR: 75\%

Specimen types for PCR (both studies): Lesion exudate, whole blood, serum, plasma, and peripheral blood mononuclear cells	Non-syphilitic patients ($\mathrm{n}=12$) Positive by PCR: 0\%
	Non-syphilitic patients with genital lesions ($\mathrm{n}=8$)
Tests performed: Darkfield microscopy, PCR tp47 (study A), and PCR tp47 (study B)	Positive by PCR: 0\%
	Non-syphilitic patients with anal lesions ($\mathrm{n}=2$)
Syphilis diagnosis (both studies): Clinical presentation, nontreponemal, and treponemal serology (test types not stated)	Positive by PCR: 0%
	Study B
	Whole blood tested from patients with primary syphilis ($\mathrm{n}=61$)
	Positive by PCR: 13.1%
	Serum tested from patients with primary syphilis (n = 63)
	Positive by PCR: 19%
	Plasma tested from patients with primary syphilis (n = 67)
	Positive by PCR: 11.9\%
	Peripheral blood mononuclear cells tested from patients with primary syphilis $(\mathrm{n}=72)$
	Positive by PCR: 31.9\%
	Whole blood tested from patients with secondary syphilis ($\mathrm{n}=69$)
	Positive by PCR: 37.7%
	Serum tested from patients with secondary syphilis ($\mathrm{n}=65$)
	Positive by PCR: 15.4%

Plasma tested from patients with secondary syphilis
($\mathrm{n}=66$)
Positive by PCR: 28.8\%
Peripheral blood mononuclear cells tested from patients with secondary syphilis $(\mathrm{n}=83)$
Positive by PCR: 31.3\%
Whole blood tested from patients with latent
syphilis ($\mathrm{n}=28$)
Positive by PCR: 14.3\%
Serum tested from patients with latent syphilis ($\mathrm{n}=$
28)

Positive by PCR: 3.6\%
Plasma tested from patients with latent syphilis ($\mathrm{n}=$ 29)

Positive by PCR: 10.3%
Peripheral blood mononuclear cells tested from patients with latent syphilis $(\mathrm{n}=31)$
Positive by PCR: 16.1%
Specimens for patients without syphilis were all negative

PCR limit of detection: 20 organisms $/ \mathrm{mL}$

Retrospective cross-sectional study	Patients with secondary syphilis ($\mathrm{n}=36$)
Positive by nested PCR: 19.4\%	
Secondary syphilis patients: 36 (33 confirmed by serology and 3 were not serologically tested)	Positive by semi-nested PCR: 38.9%

Page 60 of 85

```
Specimen type for PCR: cutaneous lesion that
was FFPE
```

Tests performed: Immunohistochemistry using rabbit polyclonal antibodies, Dieterle silver stain, nested PCR (Tp1; 228 bp), and seminested (Tp2; 125 bp) PCR for DNA polymerase I

Syphilis diagnosis: Clinical presentation and, in 33/36 patients, syphilis serology (undefined)

Prospective cross-sectional study

Secondary syphilis patients: 57 (only 12 lesion biopsies were tested by PCR and whole blood tested from 26 patients)

Specimen type for PCR: cutaneous lesion that was FFPE and whole blood

Tests performed: Warthin-Starry silver stain, nested PCR (Tp1; 228 bp), and RT-PCR for Tp polA

Syphilis diagnosis: Clinical presentation, nontreponemal (RPR), and treponemal (FTAABS) serology

Retrospective cross-sectional study	Patients with secondary syphilis $(\mathrm{n}=6)$ Positive by PCR: 66.7%
Secondary syphilis patients: 6	Patients with tertiary syphilis $(\mathrm{n}=7)$
Tertiary syphilis patients: 7	
Non-syphilitic patients: 5	

Positive by PCR: 14.3\% (the positive specimen was
Specimen type for PCR: cutaneous lesion that was FFPE

Tests performed: Warthin-Starry silver stain, nested PCR (Tp1; 228 bp), and nested PCR for Tp47

Syphilis diagnosis: Clinical presentation and treponemal (TPHA and FTA-ABS) serology

Prospective cross-sectional study	Patients with syphilis and tested by multiplex PCR and darkfield microscopy ($\mathrm{n}=295$)	(64)
Number of patients evaluated: 298	Positive by multiplex PCR and darkfield microscopy: 19.7%	
Specimen type for PCR: Genital lesion exudate	Positive by multiplex PCR and negative by darkfield microscopy: 5.8\%	
Tests performed: Darkfield microscopy and multiplex PCR for T. pallidum tp47, HSV, and Haemoplilus ducreyi	Negative by multiplex PCR and positive by darkfield microscopy: 2.4\% Negative by multiplex PCR and darkfield microscopy: 72.2%	
Syphilis diagnosis: Clinical presentation, darkfield microscopy, and nontreponemal (RPR or VDRL) serology	Patients with syphilis and tested by multiplex PCR and serology ($\mathrm{n}=296$) Positive by multiplex PCR and syphilis serology: 21.7\% Positive by multiplex PCR and negative by syphilis serology: 3.7\% Negative by multiplex PCR and positive by syphilis serology: 8.1\% Negative by multiplex PCR and syphilis serology: 66.6%	
Prospective cross-sectional study	Patients with primary syphilis ($\mathrm{n}=19$)	(65)

Primary syphilis patients: 19
Secondary syphilis patients: 9
Latent syphilis patients: 10
Congenital syphilis patients: 3
Non-syphilitic patients: 27

Specimen type for PCR: Swab from ulcer or cutaneous lesion placed in viral or chlamydiasuitable transport medium, whole blood collected in tube containing EDTA, serum, or CSF

Tests performed: Nested PCR for T. pallidum bmp, and tp47 nPCR for bmp and tp47, and PCR for tp47

Primary syphilis diagnosis: (1) The identification of T. pallidum by darkfield microscopy, fluorescent antibody, or equivalent examination of material from a chancre or a regional lymph node; or (2) the presence of one or more typical lesions (chancres) and reactive treponemal serology, regardless of nontreponemal test reactivity, in individuals with no previous history of syphilis; or (3) the presence of one or more typical lesions (chancres) and at least a fourfold increase in the titer over that of the last known nontreponemal test in individuals with a past history of syphilis treatment

Secondary syphilis diagnosis: (1) The identification of T. pallidum by microscopy, as in primary syphilis, or equivalent examination

Positive by PCR: 47.4\% (9 swab specimens positive, 3 swab specimens negative (β-globin control also negative), and 7 blood specimens negative)

Patients with secondary syphilis $(\mathrm{n}=9)$
Positive by PCR: 44.4\% (1 swab specimen positive, 2 tissue specimens positive, 4 blood specimens positive, 4 blood specimens negative, and 1 CSF specimen negative [β-globin control also negative])

Patients with congenital syphilis $(\mathrm{n}=3)$
Positive by PCR: 33.3% (1 blood specimen positive and 2 blood specimens negative)

Patients with latent syphilis $(\mathrm{n}=10)$
Positive by PCR: 0\%
Non-syphilitic patients $(\mathrm{n}=27)$
Positive by PCR: 0\%
of mucocutaneous lesions, condylomata lata, and reactive serology (nontreponemal and treponemal); or (2) the presence of typical mucocutaneous lesions, alopecia, loss of eyelashes and the lateral third of eyebrows, iritis, generalized lymphadenopathy, fever, malaise or splenomegaly, and either a reactive serology (nontreponemal and treponemal) or at least a fourfold increase in titer over that of the last known nontreponemal test

Early latent syphilis diagnosis: Asymptomatic patient with reactive serology (nontreponemal and treponemal) who within the past 12 months had one of the following: nonreactive serology or symptoms suggestive of primary or secondary syphilis or exposure to a sexual partner with primary, secondary, or early latent syphilis

Late latent syphilis diagnosis: Asymptomatic patient with persistently reactive treponemal serology (regardless of nontreponemal serology reactivity) who does not meet the criteria for early latent disease and who has not been previously treated for syphilis

Prospective cross-sectional study	Oral swabs tested from patient population $(\mathrm{N}=267)$ Positive by PCR: 42.3%
Patient population: Male $(\mathrm{N}=267) ; 90.6 \%$ of whom were living with HIV	Oral swabs tested from patients with primary syphilis and oral lesions $(\mathrm{n}=17)$
Primary syphilis patients: $38(17$ had oral lesions)	Positive: 100%

Page 65 of 85

Secondary syphilis patients: 76 (0 had oral lesions)
Early latent syphilis patients: 125 (0 had oral lesions)
Late latent syphilis patients: 5 (0 had oral lesions)
Congenital syphilis patients: 3
Non-syphilitic patients: 27

Specimen type for PCR: Oral swab from lesion (if present) or upper and lower gingiva, tonsils, hard palate, and soft palate in the absence of a lesion

Tests performed: PCR for T. pallidum polA and typing using arp, tpr, and tp0548

Syphilis diagnosis and staging: According to the CDC Sexually Transmitted Treatment
Guidelines (no additional information provided)

Oral swabs tested from patients with primary
syphilis without oral lesions $(\mathrm{n}=21)$
Positive by PCR: 61.9%

Patients with secondary syphilis $(\mathrm{n}=76)$
Positive PCR: 64.5\%

Patients with early latent syphilis $(\mathrm{n}=125)$
Positive by PCR: 28%

Patients with late latent syphilis $(\mathrm{n}=5)$
Positive by PCR: 40\%

Abbreviations: $\mathrm{kDa}=$ kilodaltons; $\mathrm{RPR}=$ rapid plasma reagin; $\mathrm{PCR}=$ polymerase chain reaction; $\mathrm{bp}=$ base pairs; $\mathrm{IHC}=$ immunohistochemistry; $\mathrm{FFPE}=$ formalin fixed and paraffin embedded tissue; TPHA = T. pallidum hemagglutination assay; VDRL = Venereal Disease Research Laboratory; FTA-ABS $=$ fluorescent treponemal antibody-absorption; MHA-TP = microhemaggluntination assay for antibodies to T. pallidum; DNA = deoxyribonucleic acid; TPPA = T. pallidum particle agglutination; NAAT = nucleic acid amplification test; CI = confidence interval; CSF = cerebral spinal fluid; HSV = herpes simplex virus; $\mathrm{IgG}=$ immunoglobulin $\mathrm{G} ; \mathrm{IgM}=$ immunoglobulin M ; EIA = enzyme immunoassay; EDTA = ethylenediaminetetraacetic acid

Supplementary Table 7. Performance characteristics of point-of-care syphilis tests

Assay	Study summary and reference standard	Performance characteristics*
Syphilis Health Prospective cross-sectional study Check	Reactive by RPR and Trep-Sure: 7 Treponemal Antibody Test	Patients enrolled: 562
Diagnostics Direct LLC 359 9th St, Suite 303	Specimens tested with Syphilis Health Check: fingerstick	Reactive by Trep-Sure: 16

Syphilis Health Check (serum) versus Trep-Sure ($\mathrm{N}=$ 562)

Sensitivity: 43.8\% (95\% CI 19.8\%-70.1\%)
Specificity: 98.0% (95% CI $96.4 \%-98.9 \%$)
Prospective cross-sectional study
Nonreactive by all tests: 171

Patients enrolled: 202

Stage of syphilis was determined for 6 patients

Reference standard: Trep-Sure EIA
RPR performed but not included as a comparator test

Observational study
Patients enrolled: 690
Stage of syphilis was determined for 10 patients
Clinical data, including the stage of syphilis, was extracted from the medical record. The criteria used to stage syphilis was not reported in the paper.

Reference standard: TPPA and RPR

Reactive by RPR: 10
Reactive by Trep-Sure: 10
Reactive by Syphilis Health Check: 26
Primary syphilis: 1
Secondary syphilis: 3
Early latent syphilis: 1
Previously treated syphilis: 1
Syphilis Health Check versus Trep-Sure ($\mathrm{N}=202$)
Sensitivity: 71.4\% (95\% CI 41.9\%-95.1\%)
Specificity: 91.5% (95% CI $87.5 \%-95.5 \%$)
Nonreactive by all tests: 671
Reactive by TPPA and RPR: 10
Reactive by Syphilis Health Check: 9
Primary syphilis: 0
Secondary syphilis: 1
Early latent syphilis: 2
Late latent syphilis: 3
Neurosyphilis: 2
Unspecified stage: 1
Previously treated syphilis: 1
Syphilis Health Check versus TPPA and RPR ($\mathrm{N}=$ 690)

Sensitivity: 90.0% (95\% CI 55.5\%-99.8\%)
Specificity: 98.5% (95% CI $97.3 \%-99.3 \%$)

Assay	Study summary and reference standard	Performance characteristics*	Reference
	Prospective cross-sectional study	Syphilis Health Check versus TPPA and RPR ($\mathrm{N}=$ 965)	(71)
	Patients enrolled: 965	Sensitivity: 76.9% (95% CI $46.2 \%-95.0 \%$) Specificity: 99.0% (95\% CI 98.1\%-99.5\%)	
	Stage of syphilis was not determined		
	Reference standard: TPPA and RPR	Syphilis Health Check versus TPPA ($\mathrm{N}=962$; 3 patients excluded from the initial 965 because of a nonreactive RPR and indeterminate TPPA) Sensitivity: 50.0% (95% CI $29.9 \%-70.1 \%$) 	
	Retrospective study	Syphilis Health Check versus TPPA, EIA, CIA and, RPR ($\mathrm{n}=1,237$)	(72)
	Patients enrolled: 1,406	Sensitivity: 95.7% (95\% CI 93.6\%-97.2\%)	
		Specificity: 93.2\% (95\% CI 91.0\%-95.1\%)	
	Stage of syphilis was not determined		
	Reference standard: TPPA, EIA, CIA, and RPR	Syphilis Health Check versus TPPA, EIA, and CIA (N $=1,406$)	
		Sensitivity: 88.7% (95\% CI 86.2\%-90.9\%)	
		Specificity: 93.1% (95\% CI 91.0\%-94.9\%)	
	Prospective and retrospective cross-sectional clinical trial study for submission to FDA.	Prospectively and retrospectively collected samples ($\mathrm{N}=1292$)	(73) ${ }^{\text {§ }}$
		PPA: 98.5% (95\% CI: 97.1\%-99.4\%)	
	Prospectively and retrospectively collected samples: 1292 (stage of syphilis not reported)	PNA: 97.3% (95\% CI: $95.9 \%-98.4 \%$)	
		Prospective study population ($\mathrm{N}=783$)	
	Prospective study population: 783	University clinic site ($\mathrm{n}=39$)	
	University clinic site: 39	PPA: 100% (95\% CI: $87.2 \%-100 \%$)	
	Hospital clinic site: 50	PNA: 50\% (95\% CI: $21.1 \%-78.9 \%$)	
	Study site 1: 400	Hospital clinic site ($\mathrm{n}=50$)	
	Study site 2: 89	PPA: 100% (95\% CI: $54.1 \%-100 \%$)	
	Study site 3: 205	PNA: 100% (95\% CI: $92.0 \%-100 \%$)	
		Study site $1(\mathrm{n}=400)$	
	Retrospective studies with samples from patients suspected of or diagnosed with syphilis: 412	PPA: 77.8% (95% CI: $57.7 \%-91.4 \%$) PNA: 97.9% (95\% CI: $95.8 \%-99.1 \%$)	

Patients diagnosed with syphilis: 315 (stage not reported)
Patients suspected of having syphilis: 97
Retrospective studies with samples from patients diagnosed with syphilis and stage reported: 164
Patients clinically diagnosed with primary treated syphilis: 28
Patients clinically diagnosed with primary untreated syphilis: 23
Patients with clinically diagnosed secondary treated syphilis: 26
Patients with clinically diagnosed secondary untreated syphilis: 25
Patients with clinically diagnosed latent treated syphilis and reactive RPR: 18
Patients with clinically diagnosed latent treated syphilis and nonreactive RPR: 19
Patients with clinically diagnosed latent untreated syphilis and reactive RPR: 22
Patients with clinically diagnosed latent treated syphilis and nonreactive RPR: 3

Reference standard: Predicate test was either ELISA, FTAABS, TPHA, or TPPA.

Stage of syphilis determined by a licensed physician based on the clinical symptoms, medical history, and laboratory test results at the time of diagnosis

Study site 2 ($\mathrm{n}=89$)
PPA: 100% (95% CI: $39.8 \%-100 \%$)
PNA: 100% (95% CI: $95.8 \%-100 \%$)
Study site 3 ($\mathrm{n}=205$)
PPA: 90\% (95\% CI: 55.5\%-99.7\%)
PNA: 99% (95% CI: $96.3 \%-99.9 \%$)
Retrospective studies with samples from patients suspected of or diagnosed with syphilis ($\mathrm{N}=412$)
Patients diagnosed with syphilis $(\mathrm{n}=315)$
PPA: 99.6\% (95\% CI: $97.9 \%-100 \%$)
PNA: 85.7% (95\% CI: 53.7\%-97\%)
Patients suspected of having syphilis $(\mathrm{n}=97)$
PPA: 100\% (95\% CI: 95.8\%-100\%)
PNA: 100% (95% CI: $69.2 \%-100 \%$)
Retrospective studies with samples from patients diagnosed with syphilis and stage reported $(\mathrm{N}=164)$ Patients clinically diagnosed with primary treated syphilis ($\mathrm{n}=28$)
PA: 100\% (95\% CI: 87.8\%-100\%)
Patients clinically diagnosed with primary untreated syphilis: 23
PA: 100% (95% CI: $85.2 \%-100 \%$)
Patients with clinically diagnosed secondary treated syphilis: 26
PA: 100% (95% CI: $86.8 \%-100 \%$)
Patients with clinically diagnosed secondary untreated syphilis: 25
PA: 100% (95% CI: $86.3 \%-100 \%$)
Patients with clinically diagnosed latent treated syphilis and reactive RPR: 18
PA: 100% (95% CI: $81.5 \%-100 \%$)
Patients with clinically diagnosed latent treated
syphilis and nonreactive RPR: 19
PA: 100% (95% CI: $82.4 \%-100 \%$)

Assay	Study summary and reference standard	Performance characteristics*	Reference
		Patients with clinically diagnosed latent untreated syphilis and reactive RPR: 22 PA: 100% (95% CI: $84.6 \%-100 \%$) Patients with clinically diagnosed latent treated syphilis and nonreactive RPR: 3 PA: 100% (95% CI: $29.2 \%-100 \%$)	
DPP HIV- Syphilis Assay Chembio Diagnostic Systems, Inc 555 Wireless Blvd Hauppauge, NY, 11788	Retrospective study	DPP HIV-Syphilis Assay versus TPPA ($\mathrm{N}=150$) Sensitivity: 95.3% (95% CI $87.9 \%-98.5 \%$)	(74)
	Patients enrolled: 150	Specificity: 100\% (95\% CI 92.9\%-100\%)	
	Stage of syphilis was not determined		
	Reference standard: TPPA		
	Retrospective study	DPP HIV-Syphilis Assay versus TPPA ($\mathrm{N}=450$)	(75)
	Patients enrolled: 450	Specificity: 98.7% (95\% CI $96.6 \%-99.6 \%$)	
	Stage of syphilis was not determined		
	Reference standard: TPPA		
	Prospective and retrospective cross-sectional clinical trial study for submission to FDA.	Prospectively collected fingerstick samples ($\mathrm{N}=1282$) Patients being screened for syphilis ($\mathrm{n}=704$) PPA: 92.5\% (95\% CI: 52.1\%-97\%)	$(76)^{\dagger}$
	Prospectively collected fingerstick samples: 1282 (stage of syphilis not reported)	PNA: 97.1% (95% CI: $95.5 \%-98.1 \%$) People living with HIV ($\mathrm{n}=171$)	
	Patients being screened for syphilis: 704	PPA: 96.6% (95\% CI: $88.5 \%-99.1 \%$)	
	People living with HIV: 171	PNA: 95.5\% (95\% CI: $90 \%-98.1 \%$)	
	Pregnant people: 407	Pregnant people ($\mathrm{n}=407$)	
		PPA: 100% (95% CI: N/A)	
	Prospectively collected venous whole blood samples: 1280 (stage of syphilis not reported)	PNA: 93.1% (95\% CI: $90.2 \%-95.2 \%)$	
	Patients being screened for syphilis: 704 People living with HIV: 171	Prospectively collected venous whole blood samples ($\mathrm{N}=1280$)	

Pregnant people: 405

Prospectively collected plasma samples: 1163 (stage of syphilis not reported)
Patients being screened for syphilis: 688
People living with HIV: 68
Pregnant people: 407
Retrospective studies with samples from pregnant people presumed positive for syphilis: 164
Pregnant people with primary treated syphilis: 0
Pregnant people with primary untreated syphilis: 3
Pregnant people with secondary treated syphilis: 0
Pregnant people with secondary untreated syphilis: 1
Pregnant people with early latent treated syphilis: 0
Pregnant people with early latent untreated syphilis: 5
Pregnant people with latent treated syphilis: 0
Pregnant people with latent treated syphilis: 3
Pregnant people with unknown stage of syphilis and unknown treatment status: 22

Retrospective studies with samples from patients diagnosed with syphilis and stage reported: 163
Patients with primary treated syphilis: 18
Patients with primary untreated syphilis: 10
Patients diagnosed secondary treated syphilis: 33
Patients diagnosed secondary untreated syphilis: 30
Patients with latent treated syphilis: 42
Patients with latent treated syphilis: 30
Reference standard: RPR, EIA, and TPPA.

Stage of syphilis determined by a licensed physician based on the clinical symptoms, medical history, and laboratory test results at the time of diagnosis

Patients being screened for syphilis $(\mathrm{n}=704)$
PPA: 96.2% (95% CI: $87.2 \%-99 \%$)
PNA: 96.3\% (95\% CI: 94.6\%-97.5\%)
People living with HIV ($\mathrm{n}=171$)
PPA: 96.6\% (95\% CI: 88.5\%-99.1\%)
PNA: 95.5% (95% CI: $90 \%-98.1 \%$)
Pregnant people ($\mathrm{n}=405$)
PPA: 100% (95% CI: N/A)
PNA: 90.8\% (95\% CI: 87.6\%-93.3\%)
Prospectively collected plasma samples ($\mathrm{N}=1163$)
Patients being screened for syphilis ($\mathrm{n}=688$)
PPA: 94.9\% (95\% CI: 83.1\%-98.6\%)
PNA: 95.1\% (95\% CI: 93.1\%-96.5\%)
People living with HIV ($\mathrm{n}=68$)
PPA: 100\% (95\% CI: 84.5\%-100\%)
PNA: 97.9% (95% CI: $88.9 \%-99.6 \%$)
Pregnant people ($\mathrm{n}=407$)
PPA: 100\% (95\% CI: N/A)
PNA: 91.6% (95% CI: $88.5 \%-93.9 \%$)
Retrospective studies with samples from pregnant people presumed positive for syphilis ($\mathrm{N}=164$)
Pregnant people with primary treated syphilis ($\mathrm{n}=0$)
Percent reactive: N/A
Pregnant people with primary untreated syphilis ($\mathrm{n}=3$)
Percent reactive: 100%
Pregnant people with secondary treated syphilis ($\mathrm{n}=0$)
Percent reactive: N/A
Pregnant people with secondary untreated syphilis ($\mathrm{n}=1$)
Percent reactive: 100\%
Pregnant people with early latent treated syphilis ($\mathrm{n}=0$)
Percent reactive: N/A

Percent reactive: 100%
Pregnant people with latent treated syphilis ($\mathrm{n}=0$)
Percent reactive: N/A
Pregnant people with latent treated syphilis ($\mathrm{n}=3$)
Percent reactive: 100%
Pregnant people with unknown stage of syphilis and unknown treatment status ($\mathrm{n}=22$)
Percent reactive: N/A
Retrospective studies with samples from patients
diagnosed with syphilis and stage reported ($\mathrm{N}=163$)
Patients with primary treated syphilis ($\mathrm{n}=18$)
Percent reactive: 100\%
Patients with primary untreated syphilis ($\mathrm{n}=10$)
Percent reactive: 100\%
Patients diagnosed secondary treated syphilis ($\mathrm{n}=33$)
Percent reactive: 100\%
Patients diagnosed secondary untreated syphilis ($\mathrm{n}=30$)
Percent reactive: 100\%
Patients with latent treated syphilis ($\mathrm{n}=42$)
Percent reactive: 100%
Patients with latent treated syphilis ($\mathrm{n}=30$)
Percent reactive: 100\%

[^3]
Supplementary Appendix 1. APHL meeting attendees, conflict of interest disclosures, and key questions

APHL Attendees: Laura Bachmann, MD, MPH, Wake Forest School of Medicine, Winston-Salem, North Carolina; William Becker, DO, MPH, Quest Diagnostics Laboratory, Lenexa, Kansas; Eric Blank, DrPH, APHL, Silver Spring, Maryland; Marc Couturier, PhD, D(ABMM), ARUP Laboratories/University of Utah, Salt Lake City, Utah; Marilyn Freeman, PhD, M(ASCP), Virginia Division of Consolidated Laboratory Services, Richmond, Virginia; Anne Gaynor, PhD, APHL, Silver Spring, Maryland; Laura Gillim-Ross, PhD, HCLD (ABB), LabCorp Englewood, Colorado; William A. Glover II, PhD, Washington Public Health Laboratories, Seattle, Washington; Edward Hook, MD, University of Alabama at Birmingham, Birmingham, Alabama; Jeffrey Klausner, MD, MPH, University of California Los Angeles, Los Angeles, California; Michael Loeffelholz, PhD, University of Texas Medical Branch, Galveston, Texas; Ruth Lynfield, MD, Minnesota Department of Health, St. Paul, Minnesota; William C. Miller, MD, PhD, The Ohio State University, Columbus, Ohio; Daniel Ortiz, PhD, University of Texas Medical Branch, Galveston, Texas; Susan Philip, MD, MPH, San Francisco Department of Public Health, San Francisco, California; Arlene C Seña, MD, MPH, University of North Carolina, Chapel Hill, North Carolina; Jeanne Sheffield, MD, Johns Hopkins University, Baltimore, Maryland; Marty Soehnlen, PhD, MPH, Michigan Public Health Laboratory, Lansing, Michigan; Elitza Theel, PhD, Mayo Clinic, Rochester, Minnesota; Anthony Tran, DrPH, MPH, District of Columbia Public Health Laboratory, Washington, DC; Susan Tuddenham, MD, MPH, Johns Hopkins University, Baltimore, Maryland; George Wendel, PhD, American Board of Obstetrics and Gynecology, Dallas, Texas; Kelly Wroblewski, MPH, APHL, Silver Spring, Maryland.

Meeting Facilitators: Joan Jarret and Paul Marquardt, PhD, AlignOrg Solutions, Shawnee, Kansas.

CDC Attendees: Sevgi Aral, PhD; Roxanne Barrow, MD, MPH; Gail Bolan, MD; Cheng Chen, PhD; Yetunde Fakile, PhD; Joseph Kang, PhD; Samantha Katz, PhD; Ellen Kersh, PhD; Sarah Kidd, MD; Jonathan Mermin, MD, MPH; S. Michele Owen, PhD; Ina Park, MD, MS; Lara Pereira, PhD; Tom Peterman, MD; Allan Pillay, PhD; Raul Romaguera, MPH, DMD; Mayur Shukla, PhD; Benedict Truman, MD; Kimberly Workowski, MD, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, CDC.

Non-CDC Federal Employee Attendees: Carolyn Deal, PhD, National Institutes of Health, Rockville, Maryland; Tamara Feldblyum, MS, PhD, U.S. Food and Drug Administration, Silver Spring, Maryland; Delmyra Turpin, RN, MPH, National Institutes of Health, Rockville, Maryland.

Conflict of Interest Disclosures: Laura Bachmann, research funds awarded directly to Wake Forest University Health Sciences Medical School from Becton-Dickenson, Cepheid, Atlas, National Institutes of Health, CDC; William Becker, CLIA Lab Director, Columbus Public Health; Jeffrey Klausner, Laboratory Director at AIDS Healthcare Foundation, received donated test kits for research from Hologic and Cepheid; Michael Loeffelholz, member CDC Office of Infectious Diseases Board of Scientific Counselors, has previously received grant funding from Fujirebio Inc; Ruth Lynfield, Committee of Infectious Diseases for the American Academy of Pediatrics; Ina Park, Medical Consultant, CDC Division of STD Prevention (Intergovernmental Personnel Act contractor).

Supplementary Appendix 2. Key questions and workgroup reviewers.

Key Question: What are the performance characteristics of each direct detection test for Treponema pallidum and what are the optimal specimen types for each test (darkfield microscopy, direct fluorescent antibody, PCR and immunohistochemical, or silver staining of tissue)?

Key Question: What options are available for molecular epidemiology and what should be considered for specimen collection and preservation?

APHL Workgroup Reviewer: Elitza Theel

Literature Search Terms: (syphilis OR Treponema pallidum) AND (genital ulcer disease OR primary syphilis OR secondary syphilis OR tertiary syphilis OR congenital syphilis OR ocular syphilis) AND (diagnosis OR lesions OR polymerase chain reaction OR PCR OR nucleic acid amplification test OR NAAT OR multiplex test OR silver stain OR silver staining OR immunohistochemistry OR IHC OR rabbit infectivity testing OR RIT OR direct detection OR dark field microscopy OR darkfield microscopy OR dark-field microscopy OR direct fluorescent antibody OR DFA OR direct fluorescent antibody for T. pallidum OR DFA-TP OR direct fluorescent antibody tissue test for T. pallidum OR DFAT-TP). Solely-based international studies were excluded from the literature search.

Key Question: What are the performance characteristics, stratified by the stage of syphilis, for non-treponemal serologic tests?

APHL Work Group Reviewers: Khalil Ghanem, MD, PhD and Susan Tuddenham, MD, MPH
Literature Search Terms: (syphilis (mesh) OR syphilis (tiab) OR maternal syphilis (tiab) OR syphilis in pregnancy (tiab) OR neurosyphilis (tiab)) AND (syphilis serodiagnosis (mesh) OR serofast (tiab) OR nontreponemal (tiab) OR non-treponemal (tiab) OR VDRL (tiab) OR venereal disease research laboratory (tiab) OR RPR (tiab) OR rapid plasma reagin (tiab) OR Toluidine Red Unheated Serum Test" (tiab)) NOT (review (publication type)) AND (1960/01/01 (PDat): 3000/12/31(PDat)) AND (English (lang)). Solely-based international studies were excluded from the literature search.

Key Question: What are the performance characteristics, stratified by the stage of syphilis, for treponemal serologic tests? (T. pallidum particle agglutination, fluorescent treponemal antibody-absorption, enzyme immunoassay, chemiluminescence assay, multiplex bead-based immunoassay)

APHL Work Group Reviewers: Ina Park, MD, MS and Anthony Tran, DrPH, MPH
Literature Search Terms: ((Treponema pallidum OR neurosyphilis OR syphilis) AND (sero-diagnos* OR serodiagnos* OR (serolog* AND (test* OR exam* OR assay* OR screen* OR lab* OR diagnos* OR nontreponemal OR treponemal OR algorithm* OR antibody titer)) OR serofast) NOT exp animals/ not exp humans/. Solely-based international studies were excluded from the literature search.

Key Question: Do laboratory tests perform differently when applied to special populations such as HIV positive individuals or pregnant women? What tests should be used in cases of suspected congenital syphilis?

APHL Work Group Reviewers: Jeanne Sheffield, MD and Ahizechukwu Eke, MD
Literature Search Terms: ((Treponema pallidum OR neurosyphilis OR syphilis) AND (sero-diagnos* OR serodiagnos* OR (serolog* AND (test* OR exam* OR assay* OR screen* OR lab* OR diagnos* OR nontreponemal OR treponemal OR algorithm* OR antibody titer)) OR serofast OR trimester OR rapid test*) NOT exp animals/ not exp humans/. Solely-based international studies were excluded from the literature search.

Key Question: What considerations (i.e., diagnostics and cost-effective implications) should be taken into account when screening for syphilis using either the traditional and reverse algorithm?

APHL Work Group Reviewers: Daniel Ortiz, PhD and Michael Loeffelholz, PhD
Literature Search Terms: ((Treponema pallidum OR neurosyphilis OR syphilis) AND (sero-diagnos* OR serodiagnos* OR (serolog* AND (test* OR exam* OR assay* OR screen* OR lab* OR diagnos* OR nontreponemal OR treponemal OR algorithm* OR antibody titer)) OR serofast) NOT exp animals/ not exp humans/. Solely-based international studies were excluded from the literature search.

Key Question: What serologic-based point-of-care (POC) tests are available to support a syphilis diagnosis, including single syphilis POC tests and combination syphilis/HIV and nontreponemal/treponemal POC tests, and what are the performance characteristics?

APHL Work Group Reviewer: Anthony Tran, DrPH, MPH

Literature Search Terms: (syphilis OR Treponema pallidum) AND (Syphilis Health Check OR rapid test OR point-of-care test OR point of care test OR POC test OR rapid point-of-care test OR rapid point of care test OR RPOC test OR diagnostic test OR combination test OR dual test OR multiplex test OR ASSURED OR rapid syphilis test OR RST OR saliva test OR immunochromatographic test OR finger-stick test). Solely-based international studies were excluded from the literature search.

Supplementary Appendix 3. Peer Review Panel

Megan Crumpler, PhD, HCLD
Laboratory Director
Orange County Public Health Laboratory, Santa Ana, California
Sheila Lukehart, PhD
Professor of Medicine and Global Health, School of Medicine
University of Washington, Seattle, Washington
Beth M. Marlowe, PhD, D(ABMM), SM(ASCP)
Senior Scientific Director, Head R\&D, Infectious Disease \& Immunology
Quest Diagnostic Infectious Disease
Quest Diagnostics, San Juan Capistrano, California
Arlene C. Seña, MD, MPH
Professor of Medicine
Institute for Global Health and Infectious Diseases
Adjunct Professor of Epidemiology
Gillings School of Public Health
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Charge to Peer Reviewers: We request your review of the body of literature used to develop "Recommendations for Tests to Detect Treponema pallidum, the Causative Agent of Syphilis." As you review the Background, Methods, and Results sections, we would appreciate your thoughts as to whether any key studies have been left out or, in your opinion, misinterpreted as well as comments on the appropriateness of the conclusions. Above all, we are interested in your thoughts about the determinations regarding the quality of the evidence and the strength of the recommendations that were drawn. The questions below will serve as a template to collect and organize your responses. Once you complete your review, please send the review back to the CDC. After the Division of STD Prevention (DSTDP) reviews your comments, they will be posted without attribution along with our responses on the DSTDP.

Template of specific questions:

1. Are there omissions of information or key studies that are critical for the intended audience of clinical laboratory scientists, clinicians, and community health workers? If so, what should be included?
2. Have we included inappropriate information? If so, what should be removed?
3. Does the current scientific understanding of the biology of T. pallidum align with the terms "nontreponemal tests" and "treponemal tests" as discussed under the section Syphilis Serologic Laboratory Testing Terminology? Should new terms for nontreponemal tests and treponemal tests be adopted if scientifically appropriate? Would updating these terms add to confusion in the literature? Do you foresee any regulatory implications regarding product insert literature if new terms are proposed? Please explain.
4. Are the recommendations appropriately drawn from the evidence presented? Please explain.
5. Is this document clear and comprehensible? If not, which sections should be revised?
6. Are the recommendations practical and achievable? For example, are resources available for laboratories interested in establishing darkfield microscopy? If not, do you have any suggestions regarding capacity building to ensure the recommendations are practical and achievable.
7. Other comments you might have?

References

1. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K150358). 2015; Available from:
https://www.accessdata.fda.gov/cdrh_docs/reviews/K150358.pdf.
2. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K173376). 2018; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K173376.pdf.
3. Creegan L, Bauer HM, Samuel MC, Klausner J, Liska S, Bolan G. An evaluation of the relative sensitivities of the venereal disease research laboratory test and the Treponema pallidum particle agglutination test among patients diagnosed with primary syphilis. Sex Transm Dis 2007;34:1016-8. (https://doi.org/10.1097/olq.0b013e3181124473)
4. Huber TW, Storms S, Young P, et al. Reactivity of microhemagglutination, fluorescent treponemal antibody absorption, Venereal Disease Research Laboratory, and rapid plasma reagin tests in primary syphilis. J Clin Microbiol 1983;17:405-9. (https://doi.org/10.1128/jcm.17.3.405409.1983)
5. Bossak HN, Duncan WP, Harris A, Falcone VH. Assay of tests for syphilis on unheated serum. Public Health Rep 1960;75:196-8. (https://www.ncbi.nlm.nih.gov/pubmed/13803076)
6. Dyckman JD, Wende RD, Gantenbein D, Williams RP. Evaluation of reagin screen, a new serological test for syphilis. J Clin Microbiol 1976;4:145-50.
(https://doi.org/10.1128/jcm.4.2.145-150.1976)
7. Dyckman JD, Gatenbein D, Wende RD, Williams RP. Clinical evaluation of a new screening test for syphilis. Am J Clin Pathol 1978;70:918-21. (https://doi.org/10.1093/ajcp/70.6.918)
8. Falcone VH, Stout GW, Moore MB, Jr. Evaluation of Rapid Plasma Reagin (Circle) Card Test. Public Health Rep 1964;79:491-5. (https://www.ncbi.nlm.nih.gov/pubmed/14155846)
9. Sischy A, da L'Exposto F, Dangor Y, et al. Syphilis serology in patients with primary syphilis and non-treponemal sexually transmitted diseases in southern Africa. Genitourin Med 1991;67:129-32. (https://doi.org/10.1136/sti.67.2.129)
10. Moore MB, Jr., Knox JM. Sensitivity and specificity in syphilis serology: Clinical implications. South Med J 1965;58:963-8. (https://www.ncbi.nlm.nih.gov/pubmed/14315433)
11. Castro R, Prieto ES, Santo I, Azevedo J, Exposto Fda L. Evaluation of an enzyme immunoassay technique for detection of antibodies against Treponema pallidum. J Clin Microbiol
2003;41:250-3. (https://doi.org/10.1128/jcm.41.1.250-253.2003)
(https://www.ncbi.nlm.nih.gov/pubmed/12517856)
12. Glicksman J, Short D, Wende RD, Knox J. Instant syphilis screening; evaluation of the rapid plasma reagin teardrop card test. Tex Med 1967;63:46-8. (https://www.ncbi.nlm.nih.gov/pubmed/6039007)
13. Singh AE, Wong T, De P. Characteristics of primary and late latent syphilis cases which were initially non-reactive with the rapid plasma reagin as the screening test. Int J STD AIDS 2008;19:464-8. (https://doi.org/10.1258/ijsa.2007.007302) (https://www.ncbi.nlm.nih.gov/pubmed/18574118)
14. Castro R, Prieto ES, da Luz Martins Pereira F. Nontreponemal tests in the diagnosis of neurosyphilis: an evaluation of the Venereal Disease Research Laboratory (VDRL) and the Rapid Plasma Reagin (RPR) tests. J Clin Lab Anal 2008;22:257-61. (https://doi.org/10.1002/jcla.20254) (https://www.ncbi.nlm.nih.gov/pubmed/18623120)
15. Dyckman JD, Wende RD. Comparison of serum and plasma specimens for syphilis serology using the reagin screen test. J Clin Microbiol 1980;11:16-8. (https://doi.org/10.1128/jcm.11.1.1618.1980)
16. Dyckman JD, Storms S, Huber TW. Reactivity of microhemagglutination, fluorescent treponemal antibody absorption, and venereal disease research laboratory tests in primary syphilis. J Clin Microbiol 1980;12:629-30. (https://doi.org/10.1128/jcm.12.4.629-630.1980)
17. Greaves AB. A comparative study of serologic tests in early syphilis. Arch Dermatol 1962;85:641-3. (https://doi.org/10.1001/archderm.1962.01590050071013)
18. Lassus A, Mustakallio KK, Aho K, Putkonen T. The order of appearance of reactivity to treponemal and lipoidal tests in early syphilis. Acta Pathol Microbiol Scand 1967;69:612-3. (https://doi.org/10.1111/j.1699-0463.1967.tb03770.x)
19. Wende RD, Mudd RL, Knox JM, Holder WR. The VDRL slide test in 322 cases of darkfield positive primary syphilis. South Med J 1971;64:633-4. (https://www.ncbi.nlm.nih.gov/pubmed/5573085)
20. Backhouse JL, Nesteroff SI. Treponema pallidum western blot: comparison with the FTA-ABS test as a confirmatory test for syphilis. Diagn Microbiol Infect Dis 2001;39:9-14.
(https://doi.org/10.1016/s0732-8893(00)00213-3)
(https://www.ncbi.nlm.nih.gov/pubmed/11173185)
21. de Lemos EA, Belem ZR, Santos A, Ferreira AW. Characterization of the Western blotting IgG reactivity patterns in the clinical phases of acquired syphilis. Diagn Microbiol Infect Dis 2007;58:177-83. (https://doi.org/10.1016/j.diagmicrobio.2006.12.024) (https://www.ncbi.nlm.nih.gov/pubmed/17350208)
22. Gibowski M, Zaba R, Machonko T. Detection of specific IgM-CLASS antitreponemal antibodies in blood serum of patients with syphilis with the use of CAPTIA Syphilis-M reaction and comparing it with VDRL, FTA-ABS and TPHA reactions. Med Sci Monit 1998;4:PI882-PI8. (https://www.medscimonit.com/download/index/idArt/502060)
23. McMillan A, Young H. Qualitative and quantitative aspects of the serological diagnosis of early syphilis. Int J STD AIDS 2008;19:620-4. (https://doi.org/10.1258/ijsa.2008.008103) (https://www.ncbi.nlm.nih.gov/pubmed/18725554)
24. Park IU, Fakile YF, Chow JM, et al. Performance of treponemal tests for the diagnosis of syphilis. Clin Infect Dis 2019;68:913-8. (https://doi.org/10.1093/cid/ciy558)
25. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K112343). 2012; Available from:
https://www.accessdata.fda.gov/cdrh_docs/reviews/K112343.pdf.
26. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K153730). 2016; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K153730.pdf.
27. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K093837). . 2010; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K093837.pdf.
28. Young H, Moyes, A., de Ste Croix, I., McMillan, A. A new recombinant antigen latex agglutination test (Syphilis Fast) for the rapid serological diagnosis of syphilis. Int J STD AIDS 1998;9:196-200. (https://doi.org/10.1258/0956462981922034)
29. Young H, Moyes A, Seagar L, McMillan A. Novel recombinant-antigen enzyme immunoassay for serological diagnosis of syphilis. J Clin Microbiol 1998;36:913-7.
(https://doi.org/10.1128/jcm.36.4.913-917.1998)
(https://jcm.asm.org/content/jcm/36/4/913.full.pdf)
30. Lefevre JC, Bertrand MA, Bauriaud R. Evaluation of the Captia enzyme immunoassays for detection of immunoglobulins G and M to Treponema pallidum in syphilis. J Clin Microbiol 1990;28:1704-7. (https://doi.org/10.1128/jcm.28.8.1704-1707.1990) (https://jcm.asm.org/content/jcm/28/8/1704.full.pdf)
31. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K160910). 2016; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K160910.pdf.
32. Ijsselmuiden OE, Meinardi MMHM, van der Sluis JJ, Menke HE, Stolz E, van Eijk RVW. Enzyme-linked immunofiltration assay for rapid serodiagnosis of syphilis. European Journal of Clinical Microbiology 1987;6:281-5. (10.1007/BF02017613) (https://doi.org/10.1007/BF02017613)
33. Ijsselmuiden OE, Schouls LM, Stolz E, et al. Sensitivity and specificity of an enzyme-linked immunosorbent assay using the recombinant DNA-derived Treponema pallidum protein TmpA for serodiagnosis of syphilis and the potential use of TmpA for assessing the effect of antibiotic therapy. J Clin Microbiol 1989;27:152-7. (https://doi.org/10.1128/jcm.27.1.152-157.1989) (https://www.ncbi.nlm.nih.gov/pubmed/2643617)
34. Romanowski B FE, Prasad E, Lukehart S, Tam M, Hook EW 3rd. Detection of Treponema pallidum by a fluorescent monoclonal antibody test. Sex Transm Dis 1987;14:156-9. (https://doi.org/10.1097/00007435-198707000-00007) (https://journals.lww.com/stdjournal/Fulltext/1987/07000/Detection_of_Treponema_pallidum_b у_a_Fluorescent.7.aspx)
35. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K091361). 2009; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K091361.pdf.
36. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K061247). 2006; Available from:
https://www.accessdata.fda.gov/cdrh_docs/reviews/K061247.pdf.
37. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K153145). 2016; Available from:
https://www.accessdata.fda.gov/cdrh_docs/reviews/K153145.pdf.
38. Augenbraun M, Rolfs R, Johnson R, et al. Treponemal specific tests for the serodiagnosis of syphilis. Sex Transm Dis 1998;25:549-52.
(https://journals.lww.com/stdjournal/Fulltext/1998/11000/Treponemal_Specific_Tests_for_the_S erodiagnosis_of.10.aspx)
39. Larsen SA, Hambie EA, Pettit DE, Perryman MW, Kraus SJ. Specificity, sensitivity, and reproducibility among the fluorescent treponemal antibody-absorption test, the microhemagglutination assay for Treponema pallidum antibodies, and the hemagglutination treponemal test for syphilis. J Clin Microbiol 1981;14:441-5.
(https://doi.org/10.1128/jcm.14.4.441-445.1981) (https://jcm.asm.org/content/jcm/14/4/441.full.pdf)
40. Pope V, Hunter EF, Feeley JC. Evaluation of the microenzyme-linked immunosorbent assay with Treponema pallidum antigen. J Clin Microbiol 1982;15:630-4.
(https://doi.org/10.1128/jcm.15.4.630-634.1982)
(https://jcm.asm.org/content/jcm/15/4/630.full.pdf)
41. Coffey EM, Bradford LL, Naritomi LS, Wood RM. Evaluation of the qualitative and automated quantitative microhemagglutination assay for antibodies to Treponema pallidum. Appl Microbiol 1972;24:26-30. (https://doi.org/10.1128/am.24.1.26-30.1972) (https://www.ncbi.nlm.nih.gov/pubmed/4560472)
42. Manavi K, Young, H. \& McMillan, A. The sensitivity of syphilis assays in detecting different stages of early syphilis. Int J STD AIDS 2006;17:768-71. (https://doi.org/10.1258/095646206778691185)
43. Lam TK, Lau HY, Lee YP, Fung SM, Leung WL, Kam KM. Comparative evaluation of the Inno-Lia syphilis score and the MarDx Treponema pallidum immunoglobulin G Marblot test assays for the serological diagnosis of syphilis. Int J STD AIDS 2010;21:110-3.
(https://doi.org/10.1258/ijsa.2009.009026)
44. Gratzer B, Pohl D, Hotton AL. Evaluation of diagnostic serological results in cases of suspected primary syphilis infection. Sex Transm Dis 2014;41:285-9.
(https://doi.org/10.1097/olq.0000000000000126)
(https://www.ncbi.nlm.nih.gov/pubmed/24722379)
45. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K053570). 2006; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K053570.pdf.
46. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K102283). 2011; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K102283.pdf.
47. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K170413). 2017; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K170413.pdf.
48. Zhu L, Gu X, Peng RR, et al. Comparison of the cerebrospinal fluid (CSF) toluidine red unheated serum test and the CSF rapid plasma reagin test with the CSF venereal disease research laboratory test for diagnosis of neurosyphilis among HIV-negative syphilis patients in China. J Clin Microbiol 2014;52:736-40. (https://doi.org/10.1128/jcm.02522-13) (https://www.ncbi.nlm.nih.gov/pubmed/24335955)
49. Marra CM, Tantalo LC, Maxwell CL, Ho EL, Sahi SK, Jones T. The rapid plasma reagin test cannot replace the venereal disease research laboratory test for neurosyphilis diagnosis. Sex Transm Dis 2012;39:453-7. (https://doi.org/10.1097/olq.0b013e31824b1cde) (https://www.ncbi.nlm.nih.gov/pubmed/22592831)
50. Marra CM, Maxwell CL, Dunaway SB, Sahi SK, Tantalo LC. Cerebrospinal fluid Treponema pallidum particle agglutination assay for neurosyphilis diagnosis. J Clin Microbiol 2017;55:1865-70. (https://doi.org/10.1128/jcm.00310-17) (https://www.ncbi.nlm.nih.gov/pubmed/28381602)
51. Buffet M, Grange PA, Gerhardt P, et al. Diagnosing Treponema pallidum in secondary syphilis by PCR and immunohistochemistry. Journal of Investigative Dermatology 2007;127:2345-50. (https://doi.org/10.1038/sj.jid.5700888) (http://www.sciencedirect.com/science/article/pii/S0022202X15331444)
52. Daniels KC FH. Specific direct fluorescent antibody detection of Treponema pallidum. Health Laboratory Science 1977;14:164-71. (https://pubmed.ncbi.nlm.nih.gov/326728/)
53. Grange PA, Gressier L, Dion PL, et al. Evaluation of a PCR test for detection of Treponema pallidum in swabs and blood. J Clin Microbiol 2012;50:546-52. (https://doi.org/10.1128/jcm.00702-11) (https://www.ncbi.nlm.nih.gov/pubmed/22219306)
54. Hook EW, 3rd, Roddy RE, Lukehart SA, Hom J, Holmes KK, Tam MR. Detection of Treponema pallidum in lesion exudate with a pathogen-specific monoclonal antibody. J Clin Microbiol 1985;22:241-4. (https://doi.org/10.1128/jcm.22.2.241-244.1985) (https://www.ncbi.nlm.nih.gov/pubmed/3897267)
55. Lee WS, Lee MG, Chung KY, Lee JB. Detection of Treponema pallidum in tissue: a comparative study of the avidin-biotin-peroxidase complex, indirect immunoperoxidase, FTAABS complement techniques and the darkfield method. Yonsei Med J 1991;32:335-41. (https://doi.org/10.3349/ymj.1991.32.4.335)
56. Grimprel E, Sanchez PJ, Wendel GD, et al. Use of polymerase chain reaction and rabbit infectivity testing to detect Treponema pallidum in amniotic fluid, fetal and neonatal sera, and cerebrospinal fluid. J Clin Microbiol 1991;29:1711-8. (https://doi.org/10.1128/jcm.29.8.17111718.1991) (https://www.ncbi.nlm.nih.gov/pubmed/1761693)
57. Hollier LM, Harstad TW, Sanchez PJ, Twickler DM, Wendel GD. Fetal syphilis: clinical and laboratory characteristics. Obstetrics \& Gynecology 2001;97:947-53.
(https://doi.org/10.1016/S0029-7844(01)01367-9)
(http://www.sciencedirect.com/science/article/pii/S0029784401013679)
58. Behrhof W, Springer E, Bräuninger W, Kirkpatrick CJ, Weber A. PCR testing for Treponema pallidum in paraffin-embedded skin biopsy specimens: test design and impact on the diagnosis of syphilis. J Clin Pathol 2008;61:390-5. (https://doi.org/10.1136/jcp.2007.046714) (https://jcp.bmj.com/content/jclinpath/61/3/390.full.pdf)
59. Hoang MP, High WA, Molberg KH. Secondary syphilis: a histologic and immunohistochemical evaluation. J Cutan Pathol 2004;31:595-9. (https://doi.org/10.1111/j.0303-6987.2004.00236.x) (https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0303-6987.2004.00236.x)
60. Cruz AR, Pillay A, Zuluaga AV, et al. Secondary syphilis in cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis 2010;4:e690-e.
(https://doi.org/10.1371/journal.pntd. 0000690) (https://www.ncbi.nlm.nih.gov/pubmed/20502522)
61. Zoechling N, Schluepen E, Soyer H, Kerl H, Volkenandt M. Molecular detection of Treponema pallidum in secondary and tertiary syphilis. Brit J Dermatol 1997;136:683-6. (https://doi.org/10.1046/j.1365-2133.1997.6561614.x) (https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2133.1997.6561614.x)
62. Heymans R, van der Helm JJ, de Vries HJC, Fennema HSA, Coutinho RA, Bruisten SM. Clinical value of Treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol 2010;48:497-502. (https://doi.org/10.1128/jcm.00720-09) (https://www.ncbi.nlm.nih.gov/pubmed/20007388)
63. Gayet-Ageron A, Ninet B, Toutous-Trellu L, et al. Assessment of a real-time PCR test to diagnose syphilis from diverse biological samples. Sex Transm Infect 2009;85:264-9. (https://doi.org/10.1136/sti.2008.034314) (https://sti.bmj.com/content/sextrans/85/4/264.full.pdf)
64. Orle KA, Gates CA, Martin DH, Body BA, Weiss JB. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. J Clin Microbiol 1996;34:49-54. (https://doi.org/10.1128/jcm.34.1.49-54.1996) (https://www.ncbi.nlm.nih.gov/pubmed/8748271)
65. Palmer HM, Higgins SP, Herring AJ, Kingston MA. Use of PCR in the diagnosis of early syphilis in the United Kingdom. Sex Transm Infect 2003;79:479-83. (https://doi.org/10.1136/sti.79.6.479) (https://www.ncbi.nlm.nih.gov/pubmed/14663125)
66. Martin IE, Tsang RSW, Sutherland K, et al. Molecular characterization of syphilis in patients in Canada: azithromycin resistance and detection of Treponema pallidum DNA in whole-blood samples versus ulcerative swabs. J Clin Microbiol 2009;47:1668-73. (https://doi.org/10.1128/jcm.02392-08) (https://www.ncbi.nlm.nih.gov/pubmed/19339468)
67. Yang CJ, Chang SY, Wu BR, et al. Unexpectedly high prevalence of Treponema pallidum infection in the oral cavity of human immunodeficiency virus-infected patients with early syphilis who had engaged in unprotected sex practices. Clin Microbiol Infect 2015;21:787.e1-
.e7. (https://doi.org/10.1016/j.cmi.2015.04.018)
(http://www.sciencedirect.com/science/article/pii/S1198743X15004310)
68. Fakile YF, Brinson M, Mobley V, Park IU, Gaynor AM. Performance of the Syphilis Health Check in clinic and laboratory-based settings. Sex Transm Dis 2019;46:250-3. (https://doi.org/10.1097/olq.0000000000000974) (https://journals.lww.com/stdjournal/Fulltext/2019/04000/Performance_of the_Syphilis_Health_ Check_in_Clinic.7.aspx)
69. Matthias J DP, Totten Y, Blackmore C, Wilson C, Peterman TA. Notes from the field. Evaluation of the sensitivity and specificity of a commercially available rapid syphilis test Escambia County, Florida, 2016. MMWR Morb Mortal Wkly Rep 2016;65:1174-5. (http://dx.doi.org/10.15585/mmwr.mm6542a5)
70. Obafemi OA, Wendel KA, Anderson TS, et al. Rapid syphilis testing for men who have sex with men in outreach settings: Evaluation of test performance and impact on time to treatment. Sex Transm Dis 2019;46:191-5. (https://doi.org/10.1097/olq.0000000000000932) (https://journals.lww.com/stdjournal/Fulltext/2019/03000/Rapid_Syphilis_Testing_for_Men_Wh o_Have_Sex_With.8.aspx)
71. Fakile YF, Markowitz N, Zhu W, et al. Evaluation of a rapid syphilis test in an emergency department setting in Detroit, Michigan. Sex Transm Dis 2019;46:429-33. (https://doi.org/10.1097/olq.0000000000000993) (https://journals.1ww.com/stdjournal/Fulltext/2019/07000/Evaluation_of_a_Rapid_Syphilis_Test _in_an.2.aspx)
72. Pereira LE, McCormick J, Dorji T, et al. Laboratory evaluation of a commercially available rapid syphilis test. J Clin Microbiol 2018;56:e00832-18. (https://doi.org/10.1128/jcm.00832-18) (https://www.ncbi.nlm.nih.gov/pubmed/30021825)
73. United States Food and Drug Administration. 510k substantial equivalence determination decision summary (K102400). 2011; Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K102400.pdf.
74. Humphries RM, Woo JS, Chung JH, Sokovic A, Bristow CC, Klausner JD. Laboratory evaluation of three rapid diagnostic tests for dual detection of HIV and Treponema pallidum antibodies. J Clin Microbiol 2014;52:4394-7. (https://doi.org/10.1128/jcm.02468-14) (https://pubmed.ncbi.nlm.nih.gov/25297332)
75. Leon SR, Ramos LB, Vargas SK, et al. Laboratory evaluation of a Dual-Path Platform Assay for rapid point-of-care HIV and syphilis testing. J Clin Microbiol 2016;54:492-4.
(https://doi.org/10.1128/JCM.03152-15)
76. United States Food and Drug Administration. DPP HIV-Syphilis System (PMA: BP180191). 2020; Available from: https://www.fda.gov/vaccines-blood-biologics/blood-blood-products/dpp-hiv-syphilis-system.

[^0]: Abbreviations: FDA = Food and Drug Administration; PPA = percent positive agreement; PPN = percent negative agreement; PA = percent agreement; $\mathrm{CI}=$ confidence interval; FTA-ABS $=$ fluorescent treponemal antibody-absorption; VDRL $=$ Venereal Disease Research Laboratory; MHA-TP $=$ microhemaggluntination assay for antibodies to T. pallidum; $\mathrm{CSF}=$ cerebral spinal fluid; TPPA = T. pallidum particle agglutination; TPHA $=$ T. pallidum hemagglutination assay; EIA = enzyme immunoassay; $\mathrm{RPR}=$ rapid plasma reagin; $\mathrm{IgG}=\mathrm{immunoglobulin} \mathrm{G} ; \operatorname{IgM}=\mathrm{immunoglobulin} \mathrm{M} ; \mathrm{N} / \mathrm{A}=\mathrm{not}$ applicable
 *Performance characteristics are stratified by syphilis stage if available. Otherwise, the performance characteristics are derived from data that did not specify the stage of syphilis.
 ${ }^{\dagger}$ Unpublished data from the FDA 510(k) Substantial Equivalence Determination Decision Summary.
 ${ }^{\text {§ }}$ Data reported from peer-reviewed studies are based on the methodology and not specific tests marketed in the United States. Unpublished data the FDA 510(k) Substantial Equivalence Determination Decision Summary for specific tests are not reported.

[^1]: Abbreviations: FDA = Food and Drug Administration; PPA = percent positive agreement; $\mathrm{PPN}=$ percent negative agreement; PA = percent agreement; $\mathrm{CI}=$ confidence interval; FTA-ABS = fluorescent treponemal antibody-absorption; VDRL = Venereal Disease Research Laboratory; MHA-TP = microhemaggluntination assay for antibodies to T. pallidum; $\mathrm{CSF}=$ cerebral spinal fluid; $\mathrm{TPPA}=$ T. pallidum particle agglutination; $\mathrm{TPHA}=T$. pallidum hemagglutination assay; EIA = enzyme immunoassay; RPR = rapid plasma reagin; $\operatorname{IgG}=$ immunoglobulin $\mathrm{G} ; \mathrm{IgM}=\mathrm{immunoglobulin} \mathrm{M} ; \mathrm{N} / \mathrm{A}=$ not applicable
 *Performance characteristics are stratified by syphilis stage if available. Otherwise, the performance characteristics are derived from data that did not specify the stage of syphilis.
 "The study stated data from the Advia Centaur Syphilis immunoassay but did not specify if the assay used was Advia Centaur Syphilis CP or Advia Centaur XP/XPT Syphilis System.
 ${ }^{8}$ The FDA 510(k) Substantial Equivalence Determination Decision Summary covers the reagents and calibrators for the Advia Centaur Syphilis CP/ XP/XPT and Atellica IM Syphilis (Syph) analyzers.
 ${ }^{\text {a }}$ Unpublished data from the FDA 510(k) Substantial Equivalence Determination Decision Summary.
 **Unpublished data the FDA 510(k) Substantial Equivalence Determination Decision Summary for specific tests are not available.
 "Data reported from peer-reviewed studies are based on the methodology and not specific tests marketed in the United States. Unpublished data the FDA
 510(k) Substantial Equivalence Determination Decision Summary for specific tests are not reported.

[^2]: Abbreviations: CSF = cerebral spinal fluid; RPR = rapid plasma reagin; FTA-ABS = fluorescent treponemal antibody-absorption; CI = confidence interval; TPPA = T. pallidum particle agglutination; TRUST = Toluidine Red Unheated Serum Test; VDRL = Venereal Disease

[^3]: Abbreviations: FDA = Food and Drug Administration; PPA = percent positive agreement; PPN = percent negative agreement; PA = percent agreement; $\mathrm{CI}=$ confidence interval; FTA-ABS = fluorescent treponemal antibody-absorption; VDRL $=$ Venereal Disease Research Laboratory; MHA-TP = microhemaggluntination assay for antibodies to T. pallidum; $\mathrm{CSF}=$ cerebral spinal fluid; $\mathrm{TPPA}=$ T. pallidum particle agglutination; $\mathrm{TPHA}=$ T. pallidum hemagglutination assay; EIA = enzyme immunoassay; RPR = rapid plasma reagin; $\operatorname{IgG}=$ immunoglobulin $\mathrm{G} ; \mathrm{IgM}=$ immunoglobulin $\mathrm{M} ; \mathrm{N} / \mathrm{A}=$ not applicable
 *Performance characteristics are stratified by syphilis stage if available. Otherwise, the performance characteristics are derived from data that did not specify the stage of syphilis.
 ${ }^{\dagger}$ Unpublished data submitted to the FDA for PMA class III approval.

